数据库面试题【十八、优化关联查询&优化子查询&优化LIMIT分页&优化UNION查询&优化WHERE子句】

简介: 数据库面试题【十八、优化关联查询&优化子查询&优化LIMIT分页&优化UNION查询&优化WHERE子句】

优化关联查询:


确定ON或者USING子句中是否有索引。


确保GROUP BY和ORDER BY只有一个表中的列,这样MySQL才有可能使用索引。


优化子查询:


用关联查询替代


优化GROUP BY和DISTINCT


这两种查询据可以使用索引来优化,是最有效的优化方法


关联查询中,使用标识列分组的效率更高


如果不需要ORDER BY,进行GROUP BY时加ORDER BY NULL,MySQL不会再进行文件排序。


WITH ROLLUP超级聚合,可以挪到应用程序处理



优化LIMIT分页


LIMIT偏移量大的时候,查询效率较低


可以记录上次查询的最大ID,下次查询时直接根据该ID来查询


优化UNION查询


UNION ALL的效率高于UNION


优化WHERE子句


解题方法


对于此类考题,先说明如何定位低效SQL语句,然后根据SQL语句可能低效的原因做排查,先从索引着手,如果索引没有问题,考虑以上几个方面,数据访问的问题,长难查询句的问题还是一些特定类型优化的问题,逐一回答。

SQL语句优化的一些方法?


1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。


2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:


select id from t where num is null
-- 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=


3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。


4.应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:


select id from t where num=10 or num=20
-- 可以这样查询:
select id from t where num=10 union all select id from t where num=20


5.in 和 not in 也要慎用,否则会导致全表扫描,如:


select id from t where num in(1,2,3) 
-- 对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3


6.下面的查询也将导致全表扫描:select id from t where name like ‘%李%’若要提高效率,可以考虑全文检索。


7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:


select id from t where num=@num
-- 可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num


8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:


select id from t where num/2=100
-- 应改为:
select id from t where num=100*2


9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:


select id from t where substring(name,1,3)=’abc’
-- name以abc开头的id应改为:
select id from t where name like ‘abc%’


10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。


相关文章
|
6天前
|
存储 缓存 固态存储
怎么让数据库查询更快
【10月更文挑战第28天】
14 2
|
8天前
|
存储 缓存 关系型数据库
怎么让数据库查询更快
【10月更文挑战第25天】通过以上综合的方法,可以有效地提高数据库查询的速度,提升应用程序的性能和响应速度。但在优化过程中,需要根据具体的数据库系统、应用场景和数据特点进行合理的调整和测试,以找到最适合的优化方案。
|
8天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
41 0
|
9天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
36 0
|
27天前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
104 6
|
25天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
57 3
Mysql(4)—数据库索引
|
27天前
|
SQL Ubuntu 关系型数据库
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
本文为MySQL学习笔记,介绍了数据库的基本概念,包括行、列、主键等,并解释了C/S和B/S架构以及SQL语言的分类。接着,指导如何在Windows和Ubuntu系统上安装MySQL,并提供了启动、停止和重启服务的命令。文章还涵盖了Navicat的使用,包括安装、登录和新建表格等步骤。最后,介绍了MySQL中的数据类型和字段约束,如主键、外键、非空和唯一等。
62 3
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
|
10天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
46 2
|
13天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
54 4
|
18天前
|
存储 关系型数据库 MySQL
如何在MySQL中创建数据库?
【10月更文挑战第16天】如何在MySQL中创建数据库?