基于MaxCompute、DataWorks和PAI构建企业数据中台经验分享

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 关于数据中台的构建我在之前的文章中有过多次分享,本篇文章主要聚焦基于阿里云大数据平台构建企业数据中台的经验反馈。

结合过去5年在政府、企业和教育等多个行业落地数据中台的实际经验,多数数据中台以混合云为主(满足企业私密化数据存储和访问需求的私有云部署平台+提供高伸缩性的公有云平台),私有云平台的部署可以选择使用阿里云飞天平台专有云,也可以基于开源体系如Hadoop 3.0 (作为底层Framework+ Spark 3.2 +TensorFlow 2.0公有云平台部署一般选择阿里云云原生大数据计算服务 MaxCompute+大数据开发治理平台 DataWorks+机器学习平台PAI。以下简要概述公有云平台如何进行搭建以及基于阿里云公有云产品体系搭建有哪些好处。

  • 一、海量数据仓库构建

海量数据仓库的构建主要基于阿里云云原生大数据计算服务 MaxCompute,相比于国内其他公有云离线分布式计算引擎, 总结了一下使用MaxCompute直观的几个优势:

  1. 整体使用费用低: 相比于其他公有云厂商产品,MaxCompute数据存储的使用成本优势明显,特别是按量计费部分,其计算资源和下载服务是按照实际使用量付费,而不像其他一些厂商名义上是按量计费,实际上是将包年包月转换成了按分钟按小时收费(哪怕实际上你只使用了存储资源,没有使用计算资源和下载服务也收取相应费用)。
  2. 核心引擎自主可控,满足很多项目客户的核心诉求,隐藏的BUG比较少,后期运维巡检和性能调优部分操作简单。
  3. 支持混合型分析场景: MaxCompute支持流批一体,支持开放数据生态,以统一平台满足数据仓库、BI、近实时分析、数据湖分析、机器学习等多种场景需要。
  4. 匹配业务发展的弹性扩展:存储和计算独立扩展,动态扩缩容,按需弹性,无需提前容量规划,满足突发业务增长。

根据实际体验,MaxCompute产品本身具有以下特点:

  1. 运维全托管: 阿里云公有云上MaxCompute以全托管的 Serverless 在线服务形式对客户提供服务,开箱即用,操作和使用都比较简单,并提供深度的弹性资源扩展,可以满足企业的超大规模集群资源需求。
  2. 数据安全保护能力强: 阿里云公有云上MaxCompute为企业提供了超过20项安全功能,帮助企业实现了从基础设施(Infrastructure)、平台层(Platform)到用户权限管理、隐私保护等多层安全功能。
  3. 湖仓一体: 提供了自有的湖仓一体功能,集成了对数据湖OSS或者 HDFS的访问分析,支持外表映射、Spark直接访问方式开展数据湖分析;在一套数仓服务和用户接口下,实现湖与仓的关联分析。

关于MaxCompute的更多功能,大家可以访问阿里云官网:云原生大数据计算服务 MaxCompute

  • 二、大数据开发治理平台构建

相比于基于开源Kettle等工具构建大数据开发治理平台,直接使用阿里云DataWorks功能更全,操作也更简单,具体包括:

  1. 图形化支持:DataWorks提供100%的图形化操作支持,这一点对系统集成商来说很重要,可以极大的降低操作难度和实施成本,这是开源产品所不能比拟的。
  2. 支持的异构数据源比较多:  DataWorks目前大约支持50种以上的异构数据源,比如传统的关系型数据库Oracle、DB2、MySQL、PostgreSQL、SQL Server, 开源产品如HDFS、Hive、HBase、Elasticsearch、Kafka、MongoDB、Redis等。
  3. 支持离线和实时数据同步场景
  4. 提供敏感数据智能识别,为存储环节的静态脱敏和使用环节的动态脱敏,内置数据水印算法,支持数据泄露后溯源可能的泄露源,并提供用户异常操作风险监控和审计。
  • 三、机器学习平台构建

通过阿里云机器学习平台PAI进行各种机器学习和深度学习建模,比使用开源平台如TensorFlow等具有以下优势:

  1. 图形化支持力度强: 相比于开源机器学习平台更多的使用命令行和开发API的的使用方式,PAI提供完整的图形化操作支持, 极大的降低了操作使用难度。通过使用PAI-Studio可视化建模平台,用户可以进行各种分布式的大规模传统机器学习计算,也可以进行各种大规模分布式深度学习、强化学习训练, 并支持流批一体训练和计算。
  2. 提供了PAI-DSW云原生交互式建模平台,满足了用户灵活的交互式机器学习开发需求:内置JupyterLab、WebIDE及Terminal,适合不同业务场景及客户需求。
  3. 机器学习算法丰富: PAI内部封装了100多种机器学习算法,支持一键部署。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
一站式大数据开发治理平台DataWorks初级课程
DataWorks 从 2009 年开始,十ー年里一直支持阿里巴巴集团内部数据中台的建设,2019 年双 11 稳定支撑每日千万级的任务调度。每天阿里巴巴内部有数万名数据和算法工程师正在使用DataWorks,承了阿里巴巴 99%的据业务构建。本课程主要介绍了阿里巴巴大数据技术发展历程与 DataWorks 几大模块的基本能力。 课程目标  通过讲师的详细讲解与实际演示,学员可以一边学习一边进行实际操作,可以深入了解DataWorks各大模块的使用方式和具体功能,让学员对DataWorks数据集成、开发、分析、运维、安全、治理等方面有深刻的了解,加深对阿里云大数据产品体系的理解与认识。 适合人群  企业数据仓库开发人员  大数据平台开发人员  数据分析师  大数据运维人员  对于大数据平台、数据中台产品感兴趣的开发者
目录
相关文章
|
1月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
61 5
|
1月前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
56 3
|
1月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
29 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
1月前
|
SQL 分布式计算 大数据
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
41 2
|
1月前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
50 1
|
1月前
|
SQL 大数据 Apache
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
75 1
|
2月前
|
存储 分布式计算 分布式数据库
深入理解Apache HBase:构建大数据时代的基石
在大数据时代,数据的存储和管理成为了企业面临的一大挑战。随着数据量的急剧增长和数据结构的多样化,传统的关系型数据库(如RDBMS)逐渐显现出局限性。
330 12
|
2月前
|
机器学习/深度学习 搜索推荐 算法
从数据中台到数据飞轮:企业升级的必然之路
在探讨是否需从数据中台升级至数据飞轮前,我们应先理解两者之间的关系。数据中台作为数据集成、清洗及治理的强大平台,是数据飞轮的基础;而要实现数据飞轮,则需进一步增强数据自动化处理与智能化利用能力。借助机器学习与人工智能技术,“转动”数据并创建反馈机制,使数据在循环中不断优化,如改进产品推荐系统,进而形成数据飞轮。此外,为了适应市场变化,企业还需提高数据基础设施的敏捷性和灵活性,这可通过采用微服务架构和云计算技术来达成,从而确保数据系统的快速扩展与调整,支持数据飞轮高效运转。综上所述,数据中台虽为基础,但全面升级至数据飞轮则需在数据自动化处理、反馈机制及系统敏捷性方面进行全面提升。
102 14
|
2月前
|
存储 大数据 索引
解锁Python隐藏技能:构建高效后缀树Suffix Tree,处理大数据游刃有余!
通过构建高效的后缀树,Python程序在处理大规模字符串数据时能够游刃有余,显著提升性能和效率。无论是学术研究还是工业应用,Suffix Tree都是不可或缺的强大工具。
46 6
|
1月前
|
SQL 存储 监控
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
47 0