使用flink插入数据到hudi数据湖初探

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍如何使用flink插入数据到hudi数据湖

环境:

  • hadoop 3.2.0
  • flink 1.11.4-bin-scala_2.11
  • hudi 0.8.0

本文基于上述组件版本使用flink插入数据到hudi数据湖中。为了确保以下各步骤能够成功完成,请确保hadoop集群正常启动。

确保已经配置环境变量HADOOP_CLASSPATH

对于开源版本hadoop,HADOOP_CLASSPATH配置为:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/share/hadoop/client/*:$HADOOP_HOME/share/hadoop/common/*:$HADOOP_HOME/share/hadoop/hdfs/*:$HADOOP_HOME/share/hadoop/mapreduce/*:$HADOOP_HOME/share/hadoop/tools/*:$HADOOP_HOME/share/hadoop/yarn/*:$HADOOP_HOME/etc/hadoop/*

本文使用的hdfs为高可用集群,对应hdfs为:hdfs://mycluster

本地安装flink集群

  1. flink下载
wget https://mirrors.tuna.tsinghua.edu.cn/apache/flink/flink-1.11.4/flink-1.11.4-bin-scala_2.11.tgz
tar zxvf flink-1.11.4-bin-scala_2.11.tgz
  1. 下载hudi相关jar包,需要下载hudi-flink-bundle_2.11-0.8.0.jar、commons-logging-1.2.jar、htrace-core-3.1.0-incubating.jar以及htrace-core4-4.1.0-incubating.jar这四个jar包到flink的lib目录下,其中
cd flink-1.11.4/lib
wget https://repo.maven.apache.org/maven2/org/apache/hudi/hudi-flink-bundle_2.11/0.8.0/hudi-flink-bundle_2.11-0.8.0.jar
wget https://repo1.maven.org/maven2/commons-logging/commons-logging/1.2/commons-logging-1.2.jar
wget https://repo1.maven.org/maven2/org/apache/htrace/htrace-core/3.1.0-incubating/htrace-core-3.1.0-incubating.jar
wget https://repo1.maven.org/maven2/org/apache/htrace/htrace-core4/4.1.0-incubating/htrace-core4-4.1.0-incubating.jar
  1. 修改配置文件
  2. vi conf/workers,写入四个localhost
localhost
localhost
localhost
localhost
  1. vi conf/flink-conf.yaml,修改taskmanager.numberOfTaskSlots的值为4
taskmanager.numberOfTaskSlots: 4
  1. 启动flink集群
bin/start-cluster.sh

启动flink-sql client

  1. 执行以下命令启动flink sql
./bin/sql-client.sh embedded -j ./lib/hudi-flink-bundle_2.11-0.8.0.jar shell
  1. 创建t1表
create table t1(
 uuid VARCHAR(20),
 name VARCHAR(20),
 age INT,
 ts TIMESTAMP(3),
 `partition` VARCHAR(20)
 )
 PARTITIONED BY (`partition`)
 WITH (
   'connector'='hudi',
   'path' = 'hdfs://mycluster/tmp/t1',
   'table.type' = 'MERGE_ON_READ'
 );
  1. 插入数据到t1表
 INSERT INTO t1 VALUES
   ('id1','Danny',23,TIMESTAMP '1970-01-01 00:00:01','par1'),
   ('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
   ('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
   ('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
   ('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
   ('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
   ('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
   ('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');
  1. 数据更新
insert into t1 values ('id1','Danny',27,TIMESTAMP '1970-01-01 00:00:01','par1');
  1. 数据查询
select * from t1 limit 10;
  1. 查询结果:

查看hdfs上对应表的分区

  1. 执行命令:
hdfs dfs -ls /tmp/t1

得到:

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
6月前
|
存储 缓存 数据管理
阿里云EMR数据湖文件系统问题之JindoFS数据孤岛的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS数据孤岛的问题如何解决
|
7月前
|
存储 JSON Kubernetes
实时计算 Flink版操作报错合集之 写入hudi时报错,该如何排查
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
7月前
|
Java 关系型数据库 MySQL
实时计算 Flink版操作报错合集之同步tidb到hudi报错,一般是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
7月前
|
分布式计算 数据处理 流计算
实时计算 Flink版产品使用问题之使用Spark ThriftServer查询同步到Hudi的数据时,如何实时查看数据变化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
SQL JSON 数据库
实时计算 Flink版操作报错合集之写入Hudi时,遇到从 COW(Copy-On-Write)表类型转换为 MOR(Merge-On-Read)表类型时报字段错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
128 2
|
8月前
|
消息中间件 Java Kafka
实时计算 Flink版操作报错合集之从hudi读数据,报错NoSuchMethodError:org.apache.hudi.format.cow.vector.reader.PaequetColumnarRowSplit.getRecord(),该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
150 0
|
8月前
|
SQL 分布式计算 HIVE
实时计算 Flink版产品使用问题之同步到Hudi的数据是否可以被Hive或Spark直接读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之holo源表有6亿数据,binlogStartupMode配置为initial,无法插入数据到结果表,少量数据测试可以,该怎么办
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
200 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
2月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。