ElasticSearch02_DSL特定语言、match、bool、term、terms、aggs、from、size、range、sort排序查询、高亮显示(七)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: ElasticSearch02_DSL特定语言、match、bool、term、terms、aggs、from、size、range、sort排序查询、高亮显示(七)

⑤. aggs/aggName/aggs/aggName子聚合:按照年龄聚合,并且求这些年龄段的这些人的平均薪资


GET bank/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "ageAgg": {
      "terms": { # 看分布
        "field": "age",
        "size": 100
      },
      "aggs": { # 与terms并列
        "ageAvg": { #平均
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  },
  "size": 0
}
输出结果:
{
  "took" : 49,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1000,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "ageAgg" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : 31,
          "doc_count" : 61,
          "ageAvg" : {
            "value" : 28312.918032786885
          }
        },
        {
          "key" : 39,
          "doc_count" : 60,
          "ageAvg" : {
            "value" : 25269.583333333332
          }
        },
        {
          "key" : 26,
          "doc_count" : 59,
          "ageAvg" : {
            "value" : 23194.813559322032
          }
        },
        {
          "key" : 32,
          "doc_count" : 52,
          "ageAvg" : {
            "value" : 23951.346153846152
          }
        },
        {
          "key" : 35,
          "doc_count" : 52,
          "ageAvg" : {
            "value" : 22136.69230769231
          }
        },
        {
          "key" : 36,
          "doc_count" : 52,
          "ageAvg" : {
            "value" : 22174.71153846154
          }
        },
        {
          "key" : 22,
          "doc_count" : 51,
          "ageAvg" : {
            "value" : 24731.07843137255
          }
        },
        {
          "key" : 28,
          "doc_count" : 51,
          "ageAvg" : {
            "value" : 28273.882352941175
          }
        },
        {
          "key" : 33,
          "doc_count" : 50,
          "ageAvg" : {
            "value" : 25093.94
          }
        },
        {
          "key" : 34,
          "doc_count" : 49,
          "ageAvg" : {
            "value" : 26809.95918367347
          }
        },
        {
          "key" : 30,
          "doc_count" : 47,
          "ageAvg" : {
            "value" : 22841.106382978724
          }
        },
        {
          "key" : 21,
          "doc_count" : 46,
          "ageAvg" : {
            "value" : 26981.434782608696
          }
        },
        {
          "key" : 40,
          "doc_count" : 45,
          "ageAvg" : {
            "value" : 27183.17777777778
          }
        },
        {
          "key" : 20,
          "doc_count" : 44,
          "ageAvg" : {
            "value" : 27741.227272727272
          }
        },
        {
          "key" : 23,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 27314.214285714286
          }
        },
        {
          "key" : 24,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 28519.04761904762
          }
        },
        {
          "key" : 25,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 27445.214285714286
          }
        },
        {
          "key" : 37,
          "doc_count" : 42,
          "ageAvg" : {
            "value" : 27022.261904761905
          }
        },
        {
          "key" : 27,
          "doc_count" : 39,
          "ageAvg" : {
            "value" : 21471.871794871793
          }
        },
        {
          "key" : 38,
          "doc_count" : 39,
          "ageAvg" : {
            "value" : 26187.17948717949
          }
        },
        {
          "key" : 29,
          "doc_count" : 35,
          "ageAvg" : {
            "value" : 29483.14285714286
          }
        }
      ]
    }
  }
}
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
5月前
|
SQL JSON 大数据
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
这篇文章是Elasticsearch的进阶使用指南,涵盖了Search API的两种检索方式、Query DSL的基本语法和多种查询示例,包括全文检索、短语匹配、多字段匹配、复合查询、结果过滤、聚合操作以及Mapping的概念和操作,还讨论了Elasticsearch 7.x和8.x版本中type概念的变更和数据迁移的方法。
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
|
3月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
63 4
|
3月前
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
70 0
|
3月前
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
47 0
|
4月前
|
JSON 自然语言处理 算法
ElasticSearch基础2——DSL查询文档,黑马旅游项目查询功能
DSL查询文档、RestClient查询文档、全文检索查询、精准查询、复合查询、地理坐标查询、分页、排序、高亮、黑马旅游案例
|
5月前
|
存储 自然语言处理 Java
ElasticSearch 实现分词全文检索 - 经纬度定位商家距离查询
ElasticSearch 实现分词全文检索 - 经纬度定位商家距离查询
75 0
|
2月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
68 5
|
3月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
273 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
4月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
5月前
|
数据可视化 Docker 容器
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
这篇文章提供了通过Docker安装Elasticsearch和Kibana的详细过程和图解,包括下载镜像、创建和启动容器、处理可能遇到的启动失败情况(如权限不足和配置文件错误)、测试Elasticsearch和Kibana的连接,以及解决空间不足的问题。文章还特别指出了配置文件中空格的重要性以及环境变量中字母大小写的问题。
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】