小程序使用Base64加密key(秘钥)和iv(偏移量)在进行aes加密,AES加密技术简介与应用。

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 小程序使用Base64加密key(秘钥)和iv(偏移量)在进行aes加密,AES加密技术简介与应用。

AES简介

AES最一种常见的对称加密算法,对称加密算法也就是加密和解密用相同的密钥。

具体的加密流程如下图:image.png

  • 明文P

image.png

image.png

image.png

在这里简单介绍下对称加密算法与非对称加密算法的区别。image.png

base64编码:

image.png

aes编码:更快,兼容设备,安全级别高:

image.png

对于加解密首先想到的不是aes解码,而是base64,由于base64的安全性没有aes的高,

所以先对key和iv进行base64加密在使用aes加密,达到代码无明文的效果

image.png

base64.js加解密函数处理方法

function base64_encode(str) { // 编码
    var c1, c2, c3;
    var base64EncodeChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
    var i = 0,
        len = str.length,
        strin = '';
    while (i < len) {
        c1 = str.charCodeAt(i++) & 0xff;
        if (i == len) {
            strin += base64EncodeChars.charAt(c1 >> 2);
            strin += base64EncodeChars.charAt((c1 & 0x3) << 4);
            strin += "==";
            break;
        }
        c2 = str.charCodeAt(i++);
        if (i == len) {
            strin += base64EncodeChars.charAt(c1 >> 2);
            strin += base64EncodeChars.charAt(((c1 & 0x3) << 4) | ((c2 & 0xF0) >> 4));
            strin += base64EncodeChars.charAt((c2 & 0xF) << 2);
            strin += "=";
            break;
        }
        c3 = str.charCodeAt(i++);
        strin += base64EncodeChars.charAt(c1 >> 2);
        strin += base64EncodeChars.charAt(((c1 & 0x3) << 4) | ((c2 & 0xF0) >> 4));
        strin += base64EncodeChars.charAt(((c2 & 0xF) << 2) | ((c3 & 0xC0) >> 6));
        strin += base64EncodeChars.charAt(c3 & 0x3F)
    }
    return strin
}
function base64_decode(input) { // 解码
    var base64EncodeChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
    var output = "";
    var chr1, chr2, chr3;
    var enc1, enc2, enc3, enc4;
    var i = 0;
    input = input.replace(/[^A-Za-z0-9\+\/\=]/g, "");
    while (i < input.length) {
        enc1 = base64EncodeChars.indexOf(input.charAt(i++));
        enc2 = base64EncodeChars.indexOf(input.charAt(i++));
        enc3 = base64EncodeChars.indexOf(input.charAt(i++));
        enc4 = base64EncodeChars.indexOf(input.charAt(i++));
        chr1 = (enc1 << 2) | (enc2 >> 4);
        chr2 = ((enc2 & 15) << 4) | (enc3 >> 2);
        chr3 = ((enc3 & 3) << 6) | enc4;
        output = output + String.fromCharCode(chr1);
        if (enc3 != 64) {
            output = output + String.fromCharCode(chr2);
        }
        if (enc4 != 64) {
            output = output + String.fromCharCode(chr3);
        }
    }
    return utf8_decode(output);
}
function utf8_decode(utftext) { // utf-8解码
    var string = '';
    let i = 0;
    let c = 0;
    let c1 = 0;
    let c2 = 0;
    while (i < utftext.length) {
        c = utftext.charCodeAt(i);
        if (c < 128) {
            string += String.fromCharCode(c);
            i++;
        } else if ((c > 191) && (c < 224)) {
            c1 = utftext.charCodeAt(i + 1);
            string += String.fromCharCode(((c & 31) << 6) | (c1 & 63));
            i += 2;
        } else {
            c1 = utftext.charCodeAt(i + 1);
            c2 = utftext.charCodeAt(i + 2);
            string += String.fromCharCode(((c & 15) << 12) | ((c1 & 63) << 6) | (c2 & 63));
            i += 3;
        }
    }
    return string;
}
module.exports = {
  base64_encode,
    base64_decode
}

keyIv.js处理秘钥和偏移量

var {base64_encode,base64_decode} = require('./keyIvBase64');//base64
// var key=base64_encode('783a2274472d5928')
// var iv=base64_encode('0102030405060708')
var key='NzgzYTIyNzQ0NzJkNTkyOA=='//加密后的秘钥  原 783a2274472d5928
var iv='MDEwMjAzMDQwNTA2MDcwOA=='//加密后的偏移量 原 0102030405060708
module.exports = {key,iv}

image.png

上图为方便省事所以keyIv.jsbase64.js合并了。

common.js汇总处理,解密秘钥和偏移量在进行aes加密

var fun_aes = require('./aes.js');  //aes加密
var {base64_encode,base64_decode} = require('./keyIvBase64');//base64
var {key,iv} = require('./keyIv');//秘钥和偏移量
// base64解密方法base64_decode()  在进行aes加密fun_aes.CryptoJS.enc.Utf8.parse()
var key = fun_aes.CryptoJS.enc.Utf8.parse(base64_decode(key)); //十六位十六进制数作为秘钥
var iv = fun_aes.CryptoJS.enc.Utf8.parse(base64_decode(iv)); //十六位十六进制数作为秘钥偏移量

image.png

aes.js加密处理方法

使用aes首先要安装 crypto-js

image.png

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
var CryptoJS = CryptoJS || function (u, p) {
  var d = {}, l = d.lib = {}, s = function () { }, t = l.Base = { extend: function (a) { s.prototype = this; var c = new s; a && c.mixIn(a); c.hasOwnProperty("init") || (c.init = function () { c.$super.init.apply(this, arguments) }); c.init.prototype = c; c.$super = this; return c }, create: function () { var a = this.extend(); a.init.apply(a, arguments); return a }, init: function () { }, mixIn: function (a) { for (var c in a) a.hasOwnProperty(c) && (this[c] = a[c]); a.hasOwnProperty("toString") && (this.toString = a.toString) }, clone: function () { return this.init.prototype.extend(this) } },
    r = l.WordArray = t.extend({
      init: function (a, c) { a = this.words = a || []; this.sigBytes = c != p ? c : 4 * a.length }, toString: function (a) { return (a || v).stringify(this) }, concat: function (a) { var c = this.words, e = a.words, j = this.sigBytes; a = a.sigBytes; this.clamp(); if (j % 4) for (var k = 0; k < a; k++)c[j + k >>> 2] |= (e[k >>> 2] >>> 24 - 8 * (k % 4) & 255) << 24 - 8 * ((j + k) % 4); else if (65535 < e.length) for (k = 0; k < a; k += 4)c[j + k >>> 2] = e[k >>> 2]; else c.push.apply(c, e); this.sigBytes += a; return this }, clamp: function () {
        var a = this.words, c = this.sigBytes; a[c >>> 2] &= 4294967295 <<
          32 - 8 * (c % 4); a.length = u.ceil(c / 4)
      }, clone: function () { var a = t.clone.call(this); a.words = this.words.slice(0); return a }, random: function (a) { for (var c = [], e = 0; e < a; e += 4)c.push(4294967296 * u.random() | 0); return new r.init(c, a) }
    }), w = d.enc = {}, v = w.Hex = {
      stringify: function (a) { var c = a.words; a = a.sigBytes; for (var e = [], j = 0; j < a; j++) { var k = c[j >>> 2] >>> 24 - 8 * (j % 4) & 255; e.push((k >>> 4).toString(16)); e.push((k & 15).toString(16)) } return e.join("") }, parse: function (a) {
        for (var c = a.length, e = [], j = 0; j < c; j += 2)e[j >>> 3] |= parseInt(a.substr(j,
          2), 16) << 24 - 4 * (j % 8); return new r.init(e, c / 2)
      }
    }, b = w.Latin1 = { stringify: function (a) { var c = a.words; a = a.sigBytes; for (var e = [], j = 0; j < a; j++)e.push(String.fromCharCode(c[j >>> 2] >>> 24 - 8 * (j % 4) & 255)); return e.join("") }, parse: function (a) { for (var c = a.length, e = [], j = 0; j < c; j++)e[j >>> 2] |= (a.charCodeAt(j) & 255) << 24 - 8 * (j % 4); return new r.init(e, c) } }, x = w.Utf8 = { stringify: function (a) { try { return decodeURIComponent(escape(b.stringify(a))) } catch (c) { throw Error("Malformed UTF-8 data"); } }, parse: function (a) { return b.parse(unescape(encodeURIComponent(a))) } },
    q = l.BufferedBlockAlgorithm = t.extend({
      reset: function () { this._data = new r.init; this._nDataBytes = 0 }, _append: function (a) { "string" == typeof a && (a = x.parse(a)); this._data.concat(a); this._nDataBytes += a.sigBytes }, _process: function (a) { var c = this._data, e = c.words, j = c.sigBytes, k = this.blockSize, b = j / (4 * k), b = a ? u.ceil(b) : u.max((b | 0) - this._minBufferSize, 0); a = b * k; j = u.min(4 * a, j); if (a) { for (var q = 0; q < a; q += k)this._doProcessBlock(e, q); q = e.splice(0, a); c.sigBytes -= j } return new r.init(q, j) }, clone: function () {
        var a = t.clone.call(this);
        a._data = this._data.clone(); return a
      }, _minBufferSize: 0
    }); l.Hasher = q.extend({
      cfg: t.extend(), init: function (a) { this.cfg = this.cfg.extend(a); this.reset() }, reset: function () { q.reset.call(this); this._doReset() }, update: function (a) { this._append(a); this._process(); return this }, finalize: function (a) { a && this._append(a); return this._doFinalize() }, blockSize: 16, _createHelper: function (a) { return function (b, e) { return (new a.init(e)).finalize(b) } }, _createHmacHelper: function (a) {
        return function (b, e) {
          return (new n.HMAC.init(a,
            e)).finalize(b)
        }
      }
    }); var n = d.algo = {}; return d
}(Math);
(function () {
  var u = CryptoJS, p = u.lib.WordArray; u.enc.Base64 = {
    stringify: function (d) { var l = d.words, p = d.sigBytes, t = this._map; d.clamp(); d = []; for (var r = 0; r < p; r += 3)for (var w = (l[r >>> 2] >>> 24 - 8 * (r % 4) & 255) << 16 | (l[r + 1 >>> 2] >>> 24 - 8 * ((r + 1) % 4) & 255) << 8 | l[r + 2 >>> 2] >>> 24 - 8 * ((r + 2) % 4) & 255, v = 0; 4 > v && r + 0.75 * v < p; v++)d.push(t.charAt(w >>> 6 * (3 - v) & 63)); if (l = t.charAt(64)) for (; d.length % 4;)d.push(l); return d.join("") }, parse: function (d) {
      var l = d.length, s = this._map, t = s.charAt(64); t && (t = d.indexOf(t), -1 != t && (l = t)); for (var t = [], r = 0, w = 0; w <
        l; w++)if (w % 4) { var v = s.indexOf(d.charAt(w - 1)) << 2 * (w % 4), b = s.indexOf(d.charAt(w)) >>> 6 - 2 * (w % 4); t[r >>> 2] |= (v | b) << 24 - 8 * (r % 4); r++ } return p.create(t, r)
    }, _map: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/="
  }
})();
(function (u) {
  function p(b, n, a, c, e, j, k) { b = b + (n & a | ~n & c) + e + k; return (b << j | b >>> 32 - j) + n } function d(b, n, a, c, e, j, k) { b = b + (n & c | a & ~c) + e + k; return (b << j | b >>> 32 - j) + n } function l(b, n, a, c, e, j, k) { b = b + (n ^ a ^ c) + e + k; return (b << j | b >>> 32 - j) + n } function s(b, n, a, c, e, j, k) { b = b + (a ^ (n | ~c)) + e + k; return (b << j | b >>> 32 - j) + n } for (var t = CryptoJS, r = t.lib, w = r.WordArray, v = r.Hasher, r = t.algo, b = [], x = 0; 64 > x; x++)b[x] = 4294967296 * u.abs(u.sin(x + 1)) | 0; r = r.MD5 = v.extend({
    _doReset: function () { this._hash = new w.init([1732584193, 4023233417, 2562383102, 271733878]) },
    _doProcessBlock: function (q, n) {
      for (var a = 0; 16 > a; a++) { var c = n + a, e = q[c]; q[c] = (e << 8 | e >>> 24) & 16711935 | (e << 24 | e >>> 8) & 4278255360 } var a = this._hash.words, c = q[n + 0], e = q[n + 1], j = q[n + 2], k = q[n + 3], z = q[n + 4], r = q[n + 5], t = q[n + 6], w = q[n + 7], v = q[n + 8], A = q[n + 9], B = q[n + 10], C = q[n + 11], u = q[n + 12], D = q[n + 13], E = q[n + 14], x = q[n + 15], f = a[0], m = a[1], g = a[2], h = a[3], f = p(f, m, g, h, c, 7, b[0]), h = p(h, f, m, g, e, 12, b[1]), g = p(g, h, f, m, j, 17, b[2]), m = p(m, g, h, f, k, 22, b[3]), f = p(f, m, g, h, z, 7, b[4]), h = p(h, f, m, g, r, 12, b[5]), g = p(g, h, f, m, t, 17, b[6]), m = p(m, g, h, f, w, 22, b[7]),
        f = p(f, m, g, h, v, 7, b[8]), h = p(h, f, m, g, A, 12, b[9]), g = p(g, h, f, m, B, 17, b[10]), m = p(m, g, h, f, C, 22, b[11]), f = p(f, m, g, h, u, 7, b[12]), h = p(h, f, m, g, D, 12, b[13]), g = p(g, h, f, m, E, 17, b[14]), m = p(m, g, h, f, x, 22, b[15]), f = d(f, m, g, h, e, 5, b[16]), h = d(h, f, m, g, t, 9, b[17]), g = d(g, h, f, m, C, 14, b[18]), m = d(m, g, h, f, c, 20, b[19]), f = d(f, m, g, h, r, 5, b[20]), h = d(h, f, m, g, B, 9, b[21]), g = d(g, h, f, m, x, 14, b[22]), m = d(m, g, h, f, z, 20, b[23]), f = d(f, m, g, h, A, 5, b[24]), h = d(h, f, m, g, E, 9, b[25]), g = d(g, h, f, m, k, 14, b[26]), m = d(m, g, h, f, v, 20, b[27]), f = d(f, m, g, h, D, 5, b[28]), h = d(h, f,
          m, g, j, 9, b[29]), g = d(g, h, f, m, w, 14, b[30]), m = d(m, g, h, f, u, 20, b[31]), f = l(f, m, g, h, r, 4, b[32]), h = l(h, f, m, g, v, 11, b[33]), g = l(g, h, f, m, C, 16, b[34]), m = l(m, g, h, f, E, 23, b[35]), f = l(f, m, g, h, e, 4, b[36]), h = l(h, f, m, g, z, 11, b[37]), g = l(g, h, f, m, w, 16, b[38]), m = l(m, g, h, f, B, 23, b[39]), f = l(f, m, g, h, D, 4, b[40]), h = l(h, f, m, g, c, 11, b[41]), g = l(g, h, f, m, k, 16, b[42]), m = l(m, g, h, f, t, 23, b[43]), f = l(f, m, g, h, A, 4, b[44]), h = l(h, f, m, g, u, 11, b[45]), g = l(g, h, f, m, x, 16, b[46]), m = l(m, g, h, f, j, 23, b[47]), f = s(f, m, g, h, c, 6, b[48]), h = s(h, f, m, g, w, 10, b[49]), g = s(g, h, f, m,
            E, 15, b[50]), m = s(m, g, h, f, r, 21, b[51]), f = s(f, m, g, h, u, 6, b[52]), h = s(h, f, m, g, k, 10, b[53]), g = s(g, h, f, m, B, 15, b[54]), m = s(m, g, h, f, e, 21, b[55]), f = s(f, m, g, h, v, 6, b[56]), h = s(h, f, m, g, x, 10, b[57]), g = s(g, h, f, m, t, 15, b[58]), m = s(m, g, h, f, D, 21, b[59]), f = s(f, m, g, h, z, 6, b[60]), h = s(h, f, m, g, C, 10, b[61]), g = s(g, h, f, m, j, 15, b[62]), m = s(m, g, h, f, A, 21, b[63]); a[0] = a[0] + f | 0; a[1] = a[1] + m | 0; a[2] = a[2] + g | 0; a[3] = a[3] + h | 0
    }, _doFinalize: function () {
      var b = this._data, n = b.words, a = 8 * this._nDataBytes, c = 8 * b.sigBytes; n[c >>> 5] |= 128 << 24 - c % 32; var e = u.floor(a /
        4294967296); n[(c + 64 >>> 9 << 4) + 15] = (e << 8 | e >>> 24) & 16711935 | (e << 24 | e >>> 8) & 4278255360; n[(c + 64 >>> 9 << 4) + 14] = (a << 8 | a >>> 24) & 16711935 | (a << 24 | a >>> 8) & 4278255360; b.sigBytes = 4 * (n.length + 1); this._process(); b = this._hash; n = b.words; for (a = 0; 4 > a; a++)c = n[a], n[a] = (c << 8 | c >>> 24) & 16711935 | (c << 24 | c >>> 8) & 4278255360; return b
    }, clone: function () { var b = v.clone.call(this); b._hash = this._hash.clone(); return b }
  }); t.MD5 = v._createHelper(r); t.HmacMD5 = v._createHmacHelper(r)
})(Math);
(function () {
  var u = CryptoJS, p = u.lib, d = p.Base, l = p.WordArray, p = u.algo, s = p.EvpKDF = d.extend({ cfg: d.extend({ keySize: 4, hasher: p.MD5, iterations: 1 }), init: function (d) { this.cfg = this.cfg.extend(d) }, compute: function (d, r) { for (var p = this.cfg, s = p.hasher.create(), b = l.create(), u = b.words, q = p.keySize, p = p.iterations; u.length < q;) { n && s.update(n); var n = s.update(d).finalize(r); s.reset(); for (var a = 1; a < p; a++)n = s.finalize(n), s.reset(); b.concat(n) } b.sigBytes = 4 * q; return b } }); u.EvpKDF = function (d, l, p) {
    return s.create(p).compute(d,
      l)
  }
})();
CryptoJS.lib.Cipher || function (u) {
  var p = CryptoJS, d = p.lib, l = d.Base, s = d.WordArray, t = d.BufferedBlockAlgorithm, r = p.enc.Base64, w = p.algo.EvpKDF, v = d.Cipher = t.extend({
    cfg: l.extend(), createEncryptor: function (e, a) { return this.create(this._ENC_XFORM_MODE, e, a) }, createDecryptor: function (e, a) { return this.create(this._DEC_XFORM_MODE, e, a) }, init: function (e, a, b) { this.cfg = this.cfg.extend(b); this._xformMode = e; this._key = a; this.reset() }, reset: function () { t.reset.call(this); this._doReset() }, process: function (e) { this._append(e); return this._process() },
    finalize: function (e) { e && this._append(e); return this._doFinalize() }, keySize: 4, ivSize: 4, _ENC_XFORM_MODE: 1, _DEC_XFORM_MODE: 2, _createHelper: function (e) { return { encrypt: function (b, k, d) { return ("string" == typeof k ? c : a).encrypt(e, b, k, d) }, decrypt: function (b, k, d) { return ("string" == typeof k ? c : a).decrypt(e, b, k, d) } } }
  }); d.StreamCipher = v.extend({ _doFinalize: function () { return this._process(!0) }, blockSize: 1 }); var b = p.mode = {}, x = function (e, a, b) {
    var c = this._iv; c ? this._iv = u : c = this._prevBlock; for (var d = 0; d < b; d++)e[a + d] ^=
      c[d]
  }, q = (d.BlockCipherMode = l.extend({ createEncryptor: function (e, a) { return this.Encryptor.create(e, a) }, createDecryptor: function (e, a) { return this.Decryptor.create(e, a) }, init: function (e, a) { this._cipher = e; this._iv = a } })).extend(); q.Encryptor = q.extend({ processBlock: function (e, a) { var b = this._cipher, c = b.blockSize; x.call(this, e, a, c); b.encryptBlock(e, a); this._prevBlock = e.slice(a, a + c) } }); q.Decryptor = q.extend({
    processBlock: function (e, a) {
      var b = this._cipher, c = b.blockSize, d = e.slice(a, a + c); b.decryptBlock(e, a); x.call(this,
        e, a, c); this._prevBlock = d
    }
  }); b = b.CBC = q; q = (p.pad = {}).Pkcs7 = { pad: function (a, b) { for (var c = 4 * b, c = c - a.sigBytes % c, d = c << 24 | c << 16 | c << 8 | c, l = [], n = 0; n < c; n += 4)l.push(d); c = s.create(l, c); a.concat(c) }, unpad: function (a) { a.sigBytes -= a.words[a.sigBytes - 1 >>> 2] & 255 } }; d.BlockCipher = v.extend({
    cfg: v.cfg.extend({ mode: b, padding: q }), reset: function () {
      v.reset.call(this); var a = this.cfg, b = a.iv, a = a.mode; if (this._xformMode == this._ENC_XFORM_MODE) var c = a.createEncryptor; else c = a.createDecryptor, this._minBufferSize = 1; this._mode = c.call(a,
        this, b && b.words)
    }, _doProcessBlock: function (a, b) { this._mode.processBlock(a, b) }, _doFinalize: function () { var a = this.cfg.padding; if (this._xformMode == this._ENC_XFORM_MODE) { a.pad(this._data, this.blockSize); var b = this._process(!0) } else b = this._process(!0), a.unpad(b); return b }, blockSize: 4
  }); var n = d.CipherParams = l.extend({ init: function (a) { this.mixIn(a) }, toString: function (a) { return (a || this.formatter).stringify(this) } }), b = (p.format = {}).OpenSSL = {
    stringify: function (a) {
      var b = a.ciphertext; a = a.salt; return (a ? s.create([1398893684,
        1701076831]).concat(a).concat(b) : b).toString(r)
    }, parse: function (a) { a = r.parse(a); var b = a.words; if (1398893684 == b[0] && 1701076831 == b[1]) { var c = s.create(b.slice(2, 4)); b.splice(0, 4); a.sigBytes -= 16 } return n.create({ ciphertext: a, salt: c }) }
  }, a = d.SerializableCipher = l.extend({
    cfg: l.extend({ format: b }), encrypt: function (a, b, c, d) { d = this.cfg.extend(d); var l = a.createEncryptor(c, d); b = l.finalize(b); l = l.cfg; return n.create({ ciphertext: b, key: c, iv: l.iv, algorithm: a, mode: l.mode, padding: l.padding, blockSize: a.blockSize, formatter: d.format }) },
    decrypt: function (a, b, c, d) { d = this.cfg.extend(d); b = this._parse(b, d.format); return a.createDecryptor(c, d).finalize(b.ciphertext) }, _parse: function (a, b) { return "string" == typeof a ? b.parse(a, this) : a }
  }), p = (p.kdf = {}).OpenSSL = { execute: function (a, b, c, d) { d || (d = s.random(8)); a = w.create({ keySize: b + c }).compute(a, d); c = s.create(a.words.slice(b), 4 * c); a.sigBytes = 4 * b; return n.create({ key: a, iv: c, salt: d }) } }, c = d.PasswordBasedCipher = a.extend({
    cfg: a.cfg.extend({ kdf: p }), encrypt: function (b, c, d, l) {
      l = this.cfg.extend(l); d = l.kdf.execute(d,
        b.keySize, b.ivSize); l.iv = d.iv; b = a.encrypt.call(this, b, c, d.key, l); b.mixIn(d); return b
    }, decrypt: function (b, c, d, l) { l = this.cfg.extend(l); c = this._parse(c, l.format); d = l.kdf.execute(d, b.keySize, b.ivSize, c.salt); l.iv = d.iv; return a.decrypt.call(this, b, c, d.key, l) }
  })
}();
(function () {
  for (var u = CryptoJS, p = u.lib.BlockCipher, d = u.algo, l = [], s = [], t = [], r = [], w = [], v = [], b = [], x = [], q = [], n = [], a = [], c = 0; 256 > c; c++)a[c] = 128 > c ? c << 1 : c << 1 ^ 283; for (var e = 0, j = 0, c = 0; 256 > c; c++) { var k = j ^ j << 1 ^ j << 2 ^ j << 3 ^ j << 4, k = k >>> 8 ^ k & 255 ^ 99; l[e] = k; s[k] = e; var z = a[e], F = a[z], G = a[F], y = 257 * a[k] ^ 16843008 * k; t[e] = y << 24 | y >>> 8; r[e] = y << 16 | y >>> 16; w[e] = y << 8 | y >>> 24; v[e] = y; y = 16843009 * G ^ 65537 * F ^ 257 * z ^ 16843008 * e; b[k] = y << 24 | y >>> 8; x[k] = y << 16 | y >>> 16; q[k] = y << 8 | y >>> 24; n[k] = y; e ? (e = z ^ a[a[a[G ^ z]]], j ^= a[a[j]]) : e = j = 1 } var H = [0, 1, 2, 4, 8,
    16, 32, 64, 128, 27, 54], d = d.AES = p.extend({
      _doReset: function () {
        for (var a = this._key, c = a.words, d = a.sigBytes / 4, a = 4 * ((this._nRounds = d + 6) + 1), e = this._keySchedule = [], j = 0; j < a; j++)if (j < d) e[j] = c[j]; else { var k = e[j - 1]; j % d ? 6 < d && 4 == j % d && (k = l[k >>> 24] << 24 | l[k >>> 16 & 255] << 16 | l[k >>> 8 & 255] << 8 | l[k & 255]) : (k = k << 8 | k >>> 24, k = l[k >>> 24] << 24 | l[k >>> 16 & 255] << 16 | l[k >>> 8 & 255] << 8 | l[k & 255], k ^= H[j / d | 0] << 24); e[j] = e[j - d] ^ k } c = this._invKeySchedule = []; for (d = 0; d < a; d++)j = a - d, k = d % 4 ? e[j] : e[j - 4], c[d] = 4 > d || 4 >= j ? k : b[l[k >>> 24]] ^ x[l[k >>> 16 & 255]] ^ q[l[k >>>
          8 & 255]] ^ n[l[k & 255]]
      }, encryptBlock: function (a, b) { this._doCryptBlock(a, b, this._keySchedule, t, r, w, v, l) }, decryptBlock: function (a, c) { var d = a[c + 1]; a[c + 1] = a[c + 3]; a[c + 3] = d; this._doCryptBlock(a, c, this._invKeySchedule, b, x, q, n, s); d = a[c + 1]; a[c + 1] = a[c + 3]; a[c + 3] = d }, _doCryptBlock: function (a, b, c, d, e, j, l, f) {
        for (var m = this._nRounds, g = a[b] ^ c[0], h = a[b + 1] ^ c[1], k = a[b + 2] ^ c[2], n = a[b + 3] ^ c[3], p = 4, r = 1; r < m; r++)var q = d[g >>> 24] ^ e[h >>> 16 & 255] ^ j[k >>> 8 & 255] ^ l[n & 255] ^ c[p++], s = d[h >>> 24] ^ e[k >>> 16 & 255] ^ j[n >>> 8 & 255] ^ l[g & 255] ^ c[p++], t =
          d[k >>> 24] ^ e[n >>> 16 & 255] ^ j[g >>> 8 & 255] ^ l[h & 255] ^ c[p++], n = d[n >>> 24] ^ e[g >>> 16 & 255] ^ j[h >>> 8 & 255] ^ l[k & 255] ^ c[p++], g = q, h = s, k = t; q = (f[g >>> 24] << 24 | f[h >>> 16 & 255] << 16 | f[k >>> 8 & 255] << 8 | f[n & 255]) ^ c[p++]; s = (f[h >>> 24] << 24 | f[k >>> 16 & 255] << 16 | f[n >>> 8 & 255] << 8 | f[g & 255]) ^ c[p++]; t = (f[k >>> 24] << 24 | f[n >>> 16 & 255] << 16 | f[g >>> 8 & 255] << 8 | f[h & 255]) ^ c[p++]; n = (f[n >>> 24] << 24 | f[g >>> 16 & 255] << 16 | f[h >>> 8 & 255] << 8 | f[k & 255]) ^ c[p++]; a[b] = q; a[b + 1] = s; a[b + 2] = t; a[b + 3] = n
      }, keySize: 8
    }); u.AES = p._createHelper(d)
})();
CryptoJS.mode.ECB = (function () {
  var ECB = CryptoJS.lib.BlockCipherMode.extend();
  ECB.Encryptor = ECB.extend({
    processBlock: function (words, offset) {
      this._cipher.encryptBlock(words, offset);
    }
  });
  ECB.Decryptor = ECB.extend({
    processBlock: function (words, offset) {
      this._cipher.decryptBlock(words, offset);
    }
  });
  return ECB;
}());
module.exports = {
  CryptoJS: CryptoJS
}
目录
相关文章
|
26天前
|
安全 网络安全 区块链
网络安全与信息安全:构建数字世界的防线在当今数字化时代,网络安全已成为维护个人隐私、企业机密和国家安全的重要屏障。随着网络攻击手段的不断升级,从社交工程到先进的持续性威胁(APT),我们必须采取更加严密的防护措施。本文将深入探讨网络安全漏洞的形成原因、加密技术的应用以及提高公众安全意识的重要性,旨在为读者提供一个全面的网络安全知识框架。
在这个数字信息日益膨胀的时代,网络安全问题成为了每一个网民不可忽视的重大议题。从个人信息泄露到企业数据被盗,再到国家安全受到威胁,网络安全漏洞如同隐藏在暗处的“黑洞”,时刻准备吞噬掉我们的信息安全。而加密技术作为守护网络安全的重要工具之一,其重要性不言而喻。同时,提高公众的安全意识,也是防范网络风险的关键所在。本文将从网络安全漏洞的定义及成因出发,解析当前主流的加密技术,并强调提升安全意识的必要性,为读者提供一份详尽的网络安全指南。
|
3月前
|
存储 SQL 安全
网络安全的盾牌:漏洞防护与加密技术的实战应用
【8月更文挑战第27天】在数字化浪潮中,信息安全成为保护个人隐私和企业资产的关键。本文深入探讨了网络安全的两大支柱——安全漏洞管理和数据加密技术,以及如何通过提升安全意识来构建坚固的防御体系。我们将从基础概念出发,逐步揭示网络攻击者如何利用安全漏洞进行入侵,介绍最新的加密算法和协议,并分享实用的安全实践技巧。最终,旨在为读者提供一套全面的网络安全解决方案,以应对日益复杂的网络威胁。
|
3月前
|
存储 缓存 NoSQL
【Azure Redis 缓存】关于Azure Cache for Redis 服务在传输和存储键值对(Key/Value)的加密问题
【Azure Redis 缓存】关于Azure Cache for Redis 服务在传输和存储键值对(Key/Value)的加密问题
|
24天前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系现代社会正常运转的关键支柱。本文旨在深入探讨网络安全漏洞的成因与影响,剖析加密技术的原理与应用,并强调提升公众安全意识的重要性。通过这些综合性的知识分享,我们期望为读者提供一个全面而深刻的网络安全视角,助力个人与企业在数字时代中稳健前行。
本文聚焦网络安全与信息安全领域,详细阐述了网络安全漏洞的潜在威胁、加密技术的强大防护作用以及安全意识培养的紧迫性。通过对真实案例的分析,文章揭示了网络攻击的多样性和复杂性,强调了构建全方位、多层次防御体系的必要性。同时,结合当前技术发展趋势,展望了未来网络安全领域的新挑战与新机遇,呼吁社会各界共同努力,共筑数字世界的安全防线。
|
25天前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
15 1
|
1月前
|
SQL 安全 算法
网络安全的盾牌与剑:漏洞防御与加密技术的实战应用
【9月更文挑战第30天】在数字时代的浪潮中,网络安全成为守护信息资产的关键防线。本文深入浅出地探讨了网络安全中的两大核心议题——安全漏洞与加密技术,并辅以实例和代码演示,旨在提升公众的安全意识和技术防护能力。
|
15天前
|
安全 Unix 数据安全/隐私保护
企业级 文件传输加密应用,干货分享
企业级 文件传输加密应用,干货分享
11 0
|
2月前
|
小程序 前端开发 索引
微信小程序中的条件渲染和列表渲染,wx:if ,wx:elif,wx:else,wx:for,wx:key的使用,以及block标记和hidden属性的说明
这篇文章介绍了微信小程序中条件渲染和列表渲染的使用方法,包括wx:if、wx:elif、wx:else、wx:for、wx:key以及block标记和hidden属性的使用。
微信小程序中的条件渲染和列表渲染,wx:if ,wx:elif,wx:else,wx:for,wx:key的使用,以及block标记和hidden属性的说明
|
3月前
|
安全 物联网 网络安全
网络安全的屏障与密钥:揭秘网络漏洞、加密技术与安全意识的重要性新技术趋势与应用:区块链、物联网与虚拟现实的未来展望
【8月更文挑战第27天】在数字时代的浪潮中,网络安全成为了我们不可忽视的话题。本文将深入浅出地探讨网络安全中的漏洞问题、加密技术的应用及其重要性,以及提升个人和组织的安全意识的必要性。通过分析常见的网络攻击手段和防御策略,我们将了解到保护信息资产的紧迫性,并掌握一些基础的防护措施。文章还将分享几个实用的代码示例,帮助读者更好地理解加密技术在实际应用中的作用。
|
3月前
|
算法 JavaScript 前端开发
对称加密算法解析:DES、AES及其在`pycryptodome` 和 `crypto-js` 模块中的应用
对称加密算法解析:DES、AES及其在`pycryptodome` 和 `crypto-js` 模块中的应用
150 1