谷歌大脑和DeepMind联合发布离线强化学习基准,将各种RL研究从线上转为线下

简介: 离线强化学习方法可以帮我们弥合强化学习研究与实际应用之间的差距。近日,Google和DeepMind推出的RL Unplugged使从离线数据集中学习策略成为可能,从而克服了现实世界中与在线数据收集相关的问题,包括成本,安全性等问题。

微信图片_20220109124114.png


最近,Google Brain和DeepMind联合提出了一个称为RL Unplugged的基准,以评估和比较离线RL方法。


RL Unplugged包含来自多个领域的数据,包括游戏(例如Atari基准测试)和模拟的电机控制等(例如DM Control Suite)。 


RL Unplugged为每个任务域提出了详细的评估方法,对监督学习和离线RL方法进行了广泛的分析,数据集包括部分或完全可观察的任务域,使用连续或离散的动作,并且具有随机性和非平稳性等,能很好地评估强化学习智能体的性能。


为什么需要离线强化学习


近年来,强化学习(RL)取得了重要突破,包括击败《星际争霸II》和DOTA人类玩家的长程决策(2019年),机器人的高维运动控制等(Akkaya等人,2019年)。 但是,这些成功很大程度上取决于智能体与环境的反复在线交互。尽管在模拟方面取得了成功,但在现实中很难推广。发电厂,机器人,医疗保健系统或自动驾驶汽车的运行成本很高,这些场景下的试验可能会带来危险的后果。

   微信图片_20220109124116.gif      

在实时 RL 中,算法在线收集学习经验       


微信图片_20220109124117.gif      

在离线 RL 中,经验都是离线收集 


因此离线强化学习再度兴起。离线RL可以从离线的数据中学习新策略,而无需与环境进行任何真实的交互。RL 算法从这些离线数据集学习的能力,对于我们未来构建机器学习系统的方式有巨大的潜在影响。 


离线强化学习的难点在哪?


之前,对 RL 进行离线基准测试的方法仅限于一个场景: 数据集来自某个随机或先前训练过的策略,算法的目标是提高原策略的性能。 这种方法的问题是,现实世界的数据集不可能由单一的 RL 训练的策略产生,而且这种方法不能泛化到其他的场景。


 缺乏基线让算法评估变得困难。


在当前的离线RL研究中,实际应用领域的重要属性,高维感知流(例如图像),不同的动作空间等覆盖不全,非平稳性和随机性不足,使得现存的基准很难评估离线RL算法的实用性。 


因此,比较算法并确保其可重复性显得尤为重要,RL Unplugged的目的就是通过提出通用的基准,数据集,评估协议和代码来解决这些问题。 具有强大基准的大型数据集一直是机器学习成功的主要因素。


例如计算机视觉中最常使用的数据集ImageNet和COCO等,而强化学习中主要使用游戏数据,其中模拟器为在线RL智能体(例如AlphaGo)提供了丰富的数据,而缺少明确基准的数据集会阻碍RL的发展。      

 微信图片_20220109124119.png      

现实世界中的RL问题都需要通用的算法解决方案,并且可以在各种挑战中展现出强大的性能。我们的基准套件旨在涵盖一系列属性,以确定学习问题的难度并影响解决方案策略的选择。 


RL Unplugged让离线强化学习成为现实

 

RL Unplugged的初始版本中包含了广泛的任务域,包括Atari游戏和模拟机器人任务。


尽管所用环境的性质不同,RL Unplugged还是为数据集提供了统一的API。任何数据集中的每个条目都由状态(st),动作(at),奖励(rt),下一个状态(st + 1)和下一个动作(at + 1)组成。对于序列数据,还提供了将来的状态,动作和奖励,从而可以训练需要内存的任务。 


RL Unplugged的主要贡献:(i)统一的数据集API(ii)各种离线环境(iii)离线RL研究的评估协议(iv)参考基准。


RL Unplugged中的数据集可将各种在线RL研究转为离线的,而无需处理RL的探索组件。       


微信图片_20220109124121.png 

数据集 


动作空间包括具有离散和连续动作空间以及可变动作维度(最多56个维度)的任务。 


观察空间包括可以从MDP的低维自然状态空间解决的任务,还包括由高维图像组成的任务(例如Atari 2600)等。 部分可见性和对内存的需求部分,包括以特征向量完整表示MDP状态的任务,以及需要智能体整合不同长度范围内的信息来估计状态的任务。 


探索难度包括的任务因探索难度的不同而有所变化,可调整的属性有动作空间的大小,奖励的稀疏性或学习问题的范围。 为了更好地反映现实系统中遇到的困难,我们还包括「现实世界中的RL挑战」任务,涵盖了动作延迟,随机过渡动态性和非平稳性等方面的内容。 RL Unplugged引入了涵盖不同任务的数据集。


例如,在Atari 2600上,使用的大型数据集是通过对多个种子进行策略外智能体培训而生成的。相反,对于RWRL套件,使用了来自固定的次优策略的数据。 


评估方法 


在严格的离线设置中,不允许进行环境交互。这使得超参数调整(包括确定何时停止训练过程)变得困难。这是因为我们无法采用由不同的超参数获得的策略,并在环境中运行它们来确定哪些策略获得更高的奖励。


理想情况下,离线RL将仅使用离线数据来评估由不同的超参数获得的策略, 我们将此过程称为离线策略选择。在RL Unplugged中,我们想评估两种设置下的离线RL性能。

     微信图片_20220109124123.png


(左)在线策略选择进行评估的流程(右)离线策略选择进行评估的流程 


在线策略选择进行评估(左),可以在线方式与环境互动来评估不同的超参数配置,让我们能够隔离评估离线RL方法的性能,但是它在许多现实环境中都是不可行的,因此,它对当前离线RL方法的实用性过于乐观。 


离线策略选择进行评估(右)并不受欢迎,但它确实很重要,因为它表明不完善的策略选择的鲁棒性,这更能反映离线RL对于实际问题的响应情况。但是它也有缺点,即存在许多设计选择,包括用于离线策略选择的数据,选择哪种离线策略评估算法等问题。 


两种方法的优劣还无定论,因此RL Unplugged的基准可使用在线和离线策略选择两种方法进行评估。 


任务域 


对于每个任务域,RL Unplugged都对所包含的任务进行了详细描述,指出哪些任务是针对在线和离线策略选择的,并提供了相应的数据描述。


  • DM Control Suite,是在MuJoCo中实现的一组控制任务。


  • DM Locomotion,是涉及类人动物的运动任务。


  • Atari 2600,街机学习环境(ALE)套件,包含57套Atari 2600游戏(Atari57)。


  • Real-world Reinforcement Learning Suite,包括高维状态和动作空间,较大的系统延迟,系统约束,多目标,处理非平稳性和部分可观察性等任务。


基线模型 


RL Unplugged为连续(DM Control Suite,DM Locomotion)和离散动作(Atari 2600)任务提供了基线模型。一些算法仅适用于离散或连续动作空间,因此我们仅在它们适合的任务中提供了评估算法。  

   微信图片_20220109124124.png


DM Control Suite Baselines. (左)使用在线策略选择进行评估的结果(右)使用离线策略选择进行评估的结果 


D4PG,BRAC和RABM在较轻松的任务( Cartpole swingup.)中表现较好。但是BC和RABM在较艰巨的任务(Humanoid run)上表现最佳。 


展望未来,RL Unplugged将随着RL研究社区和DeepMind贡献的数据集逐渐发展壮大,离线学习也会在强化学习中占据自己的一席之地。 


更多细节可参见:https://arxiv.org/pdf/2006.13888v1.pdf

相关文章
|
安全 Linux 编译器
内存泄漏检测组件的分析与实现(linux c)-mtrace工具使用
内存泄漏产生原因 在堆上使用malloc/remalloc/calloc分配了内存空间,但是没有使用free释放对应的空间。
455 0
|
Web App开发 编解码 安全
视频会议技术 入门探究:WebRTC、Qt与FFmpeg在视频编解码中的应用
视频会议技术 入门探究:WebRTC、Qt与FFmpeg在视频编解码中的应用
1601 4
|
网络安全 数据安全/隐私保护
荔枝派Zero(全志V3S)开启 SSH 实现远程连接和文件传输
本文将在 Buildroot 根文件系统开启 ssh 功能。
633 0
|
6月前
|
数据采集 Go API
Go语言实战案例:使用context控制协程取消
本文详解 Go 语言中 `context` 包的使用,通过实际案例演示如何利用 `context` 控制协程的生命周期,实现任务取消、超时控制及优雅退出,提升并发程序的稳定性与资源管理能力。
376 152
|
11月前
|
API
掌握 HTTP 请求的艺术:理解 cURL GET 语法
掌握 cURL GET 请求的语法和使用方法是 Web 开发和测试中的基本技能。通过灵活运用 cURL 提供的各种选项,可以高效地与 API 进行交互、调试网络请求,并自动化日常任务。希望本文能帮助读者更好地理解和使用 cURL,提高工作效率和代码质量。
1207 7
|
数据采集 人工智能 自然语言处理
Llama 3.1发布:4050亿参数模型,迄今为止最强的开源大模型之一
Meta宣布发布Llama 3.1 405B,这一目前公开的最大且最先进的语言模型,标志着开源语言模型新时代的到来。Llama 3.1 405B不仅在常识理解、数学、工具使用及多语言翻译等功能上媲美顶尖AI模型,其8B和70B版本亦支持多种语言,拥有长达128K的上下文理解能力。该模型在150多个多语言基准测试中表现出色,并经过广泛的人工评估。为克服大规模训练挑战,Meta采用标准解码器架构和迭代后训练策略,大幅提升了数据质量和模型性能。此外,Llama 3.1通过监督微调、拒绝采样和直接偏好优化等手段提高了模型对指令的响应性和安全性。
483 2
|
人工智能 自然语言处理 小程序
魔搭社区每周速递(12.15-12.21)
🙋魔搭ModelScope本期社区进展:📟1914个模型,📁58个数据集,🎨78个创新应用,📄 8篇内容
488 4
魔搭社区每周速递(12.15-12.21)
|
人工智能 Linux iOS开发
操作系统的演变:从批处理系统到现代操作系统
【10月更文挑战第27天】 本文回顾了操作系统的历史,从最早的批处理系统到现代的多任务、多用户操作系统。我们将探讨操作系统的核心概念,包括进程管理、内存管理、文件系统和设备驱动等。我们还将介绍一些著名的操作系统,如Windows、Linux和macOS,并讨论它们的特点和优势。最后,我们将展望操作系统的未来发展趋势。
442 0
|
机器学习/深度学习 编解码 人工智能
技术前沿探索:生成对抗网络(GANs)的革新之路
【10月更文挑战第14天】技术前沿探索:生成对抗网络(GANs)的革新之路
356 1
|
机器学习/深度学习 人工智能 TensorFlow
利用AI技术实现智能垃圾分类
【8月更文挑战第67天】随着人工智能技术的不断发展,越来越多的应用场景开始涌现。本文将介绍如何利用AI技术实现智能垃圾分类,通过代码示例和实际应用案例,帮助读者了解AI技术在垃圾分类领域的应用价值和潜力。
1110 19