7.5亿美元做代码转换?一个Facebook TransCoder AI就够了!

简介: 代码的迁移和语言转换是一件很困难且昂贵的事情,澳大利亚联邦银行就曾花费5年时间,耗费7.5亿美元将其平台从COBOL转换为Java。而Facebook最近宣称,他们开发的一种神经转换编译器(neural transcompiler),可以将一种高级编程语言(如C ++,Java和Python)转换为另一种,效率飞起!

微信图片_20220109012059.png


从 COBOL 到 Java,TransCoder能帮你省下7.5亿美元


不同的编程语言之间也可以自动转换了!


 要知道,将现有的代码库迁移到现代或者更有效的语言,如 Java 或 c + + ,需要精通源语言和目标语言,而且无论是金钱还是时间耗费都十分高昂。


澳洲联邦银行在过去五年中花费了大约7.5亿美元将其平台从 COBOL 转换为 Java。


微信图片_20220109012101.png

但是,Facebook最近开发的神经转换编译器TransCoder让代码转换出现了新的转机。该系统可以将代码从一个高级语言转换成另一个,比如 c + + 、 Java 和 Python。


这个系统是弱监督的,可以在没有标签的数据集中寻找以前未检测到的模式,只需要少量的人工监督。研究人员称,这比基于规则数据集的模型要高效得多。


   微信图片_20220109012103.png


理论上,代码转换编译器能够提供很多的帮助,让开发者无需从头重新写代码。


但实践中,代码转换是一件很困难的事情,因为不同语言依赖于不同的语法准则,不同的平台api、标准库函数和可变类型。 


因此,TransCoder的面世,无疑是企业的福音。因为他们不必像澳洲联邦银行那样,再去耗费大量的时间和金钱去做代码转换的复杂工作,只需要选择Facebook,选择TransCoder,平台迁移即可迎刃而解。 从Java到C++,TransCoder转换准确率超九成!


TransCoder是基于跨语言模型预训练去做的模型初始化,这样的训练不着眼于编程语言的类型,而仅仅将表示相同指令的代码段映射为相同的表示形式。 


之所以TransCoder能进行跨语言模型的训练,是因为系统的标记原理着眼于跨语言之间的共同关键字,如「if」,「for」等,以及数字、数学运算符和出现在源代码中的英语字符串。


这样反向翻译之后通过源-目标模型和并行训练的目标-源模型耦合,从而提高了训练的质量。 


研究人员为了评估TransCoder的性能,从GeeksforGeeks中提取了852个C ++,Java和Python并行函数,利用这些不同语言的转换来测试函数语义是否精准,测试的结果如下:


微信图片_20220109012105.png


GeeksforGeeks是一个在线平台,用于收集编写代码时的问题,并提供多种编程语言的解决方案。 


研究人员称,TransCoder在实验过程中展示了对每种语言特有语法的理解能力,并且能够适应小范围的修改。


尽管这个模型并不完美,但是性能优于已有的利用专家知识手动构建的框架。 从自然语言翻译到代码翻译,seq2seq再立新功


TransCoder使用了经典的序列到序列(seq2seq)模型,该模型由基于Transformer的编码器和解码器组成,seq2seq模型的好处在于,你只需要有对应的输入输出即可,而不需要关心是哪两种编程语言。 


TransCoder仿照Lample等人中确定的无监督机器翻译流程进行训练,包括初始化,语言建模和反向翻译。


实验表明以跨语言方式对整个模型(不仅是单词表示形式)进行预训练显著改善了无监督机器翻译的效果,TransCoder遵循Lample和Conneau 的预训练策略,其中跨语言模型(XLM)在单语言的源代码数据集上,使用遮罩语言建模进行了预训练。


     微信图片_20220109012107.png     

TransCoder的转换原理 


其中,跨语言本质来源于多种语言中的大量通用标记(锚点)。


在英语-法语翻译的上下文中,锚点主要由数字、城市、人名等组成,而在编程语言中,这些定位点来自常见的关键字(for,while,if,try等),以及源代码中出现的数字,运算符和英语字符串等。 


seq2seq模型的编码器和解码器由预训练的XLM模型参数进行初始化。


对于编码器而言,初始化非常简单,因为它与XLM模型具有相同的体系结构。


但是解码器具有与attention机制有关的额外参数,所以这部分采用了随机初始化。 


XLM预训练允许seq2seq模型生成输入序列的高质量表示。


然而,解码器缺乏翻译能力,因为从未训练过解码器基于源表示对序列进行解码。为了解决这个问题,TransCoder利用降噪自编码(DAE)对序列进行编码和解码,再对模型进行训练。 


在测试时,模型可以对Python序列进行编码,并使用C ++起始符号对其进行解码以生成C ++转换。


C ++转换的质量取决于模型的「跨语言」性能:如果Python和C ++转换被编码器映射到相同的表示,则解码器将成功生成对应的C ++代码。 


实际上,仅XLM预训练和降噪自编码就足以生成翻译。


但是,这些翻译的质量往往很低,因为该模型从未对编程语言实现的功能进行训练。TransCoder为了解决这个问题,使用了反向翻译,这是在弱监督的情况下利用单语言数据的最有效方法。 


在无监督的情况下,源到目标模型与后向的目标到源模型是并行训练的。


目标到源模型用于将目标序列翻译成源语言,从而产生与真实目标序列相对应的嘈杂源序列。然后以弱监督的方式训练源到目标模型,从前面生成的嘈杂源序列中重建目标序列,反之亦然,并行训练两个模型直到收敛。


作者简介


 该论文一作Marie-Anne Lachaux,目前是Facebook人工智能研究院NLP方向研究员,巴黎高等电信学院计算机图像学学士,伦敦国王学院计算机图像学硕士,曾在达索系统(Dassault Systèmes)担任研究员。


主要研究方向为计算机视觉和图像识别,计算机神经网络。 在达索担任研究员期间,Marie-Anne Lachaux主要方向为拓扑优化研究。


拓扑优化是设计机械零件的一种新方法,其目的是在保持机械性能的同时大量减少零件的质量。拓扑优化的实现方法是基于Visual Studio,c++和许多经典库,这为Marie-Anne Lachaux在Facebook开展NLP研究奠定了基础。    


 微信图片_20220109012109.png      

此前,已经有很多基于深度学习的代码自动补全,效果也十分惊艳,而基于规则的代码转换也有不少项目,但大多数泛化能力不强,毕竟能写的规则有限。 


TransCoder基于深度学习进行代码转换,无视了这些规则,直接端到端,对相关工作还是有很大的启发,如果TransCoder准确率持续提升,那算法模型工程化的工作量将大幅缩减,程序员的编码效率也将有质的飞跃。


参考链接:

https://arxiv.org/pdf/2006.03511.pdf

https://venturebeat.com/2020/06/08/facebooks-transcoder-ai-converts-code-from-one-programming-language-into-another/

相关文章
|
1月前
|
人工智能 IDE Java
AI Coding实践:CodeFuse + prompt 从系分到代码
在蚂蚁国际信贷业务系统建设过程中,技术团队始终面临双重考验:一方面需应对日益加速的需求迭代周期,满足严苛的代码质量规范与金融安全合规要求;另一方面,跨地域研发团队的协同效率与代码标准统一性,在传统开发模式下逐渐显现瓶颈。为突破效率制约、提升交付质量,我们积极探索人工智能辅助代码生成技术(AI Coding)的应用实践。本文基于蚂蚁国际信贷技术团队近期的实际项目经验,梳理AI辅助开发在金融级系统快速迭代场景中的实施要点并分享阶段性实践心得。
361 25
AI Coding实践:CodeFuse + prompt 从系分到代码
|
1月前
|
人工智能 自然语言处理 安全
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
AI兴起催生“氛围编程”——用自然语言生成代码,看似高效实则陷阱。它让人跳过编程基本功,沦为只会提示、不懂原理的“中间商”。真实案例显示,此类项目易崩溃、难维护,安全漏洞频出。AI是技能倍增器,非替代品;真正强大的开发者,永远是那些基础扎实、能独立解决问题的人。
194 11
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
|
1月前
|
人工智能 机器人 测试技术
AI写的代码为何金玉其外败絮其中
本文分析AI编码看着好看其实很烂的现象、原因,探索行之有效的的解决方案。并从理论上延伸到如何更好的与AI协作的方式上。
73 3
|
2月前
|
人工智能 测试技术 开发工具
如何将 AI 代码采纳率从30%提升到80%?
AI编码采纳率低的根本原因在于人类期望其独立完成模糊需求,本文提出了解决之道,讲解如何通过结构化文档和任务拆解提高AI的基础可靠性。
940 24
|
1月前
|
人工智能 监控 Java
零代码改造 + 全链路追踪!Spring AI 最新可观测性详细解读
Spring AI Alibaba 通过集成 OpenTelemetry 实现可观测性,支持框架原生和无侵入探针两种方式。原生方案依赖 Micrometer 自动埋点,适用于快速接入;无侵入探针基于 LoongSuite 商业版,无需修改代码即可采集标准 OTLP 数据,解决了原生方案扩展性差、调用链易断链等问题。未来将开源无侵入探针方案,整合至 AgentScope Studio,并进一步增强多 Agent 场景下的观测能力。
1380 34
|
1月前
|
人工智能 安全 开发工具
C3仓库AI代码门禁通用实践:基于Qwen3-Coder+RAG的代码评审
本文介绍基于Qwen3-Coder、RAG与Iflow在C3级代码仓库落地LLM代码评审的实践,实现AI辅助人工评审。通过CI流水线自动触发,结合私域知识库与生产代码同仓管理,已成功拦截数十次高危缺陷,显著提升评审效率与质量,具备向各类代码门禁平台复用推广的价值。(239字)
376 24
|
1月前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
2月前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
421 7
|
2月前
|
存储 人工智能 数据可视化
企业级 AI 模型无代码落地指南:基于阿里云工具链,从 0 到 1 实现业务价值
某汽车零部件厂商通过阿里云PAI、OSS等工具,实现无代码AI质检落地:仅用控制台操作完成数据治理到部署,质检效率提升3倍,模型周期从2月缩至2周。本文详解全栈可视化方案,助力企业零代码落地AI。
328 1

热门文章

最新文章