【Java】字符串拼接 五种方法的性能比较分析 从执行100次到90万次

简介: 字符串拼接一般使用“+”,但是“+”不能满足大批量数据的处理,Java中有以下五种方法处理字符串拼接,各有优缺点,程序开发应选择合适的方法实现。1. 加号 “+”2. String contact() 方法3. StringUtils.join() 方法4. StringBuffer append() 方法5. StringBuilder append() 方法

字符串拼接一般使用“+”,但是“+”不能满足大批量数据的处理,Java中有以下五种方法处理字符串拼接,各有优缺点,程序开发应选择合适的方法实现。

  1. 加号 “+”
  2. String contact() 方法
  3. StringUtils.join() 方法
  4. StringBuffer append() 方法
  5. StringBuilder append() 方法

QQ截图20220108100536.png
由此可以看出:

  1. 方法1 加号 “+” 拼接 和 方法2 String contact() 方法 适用于小数据量的操作,代码简洁方便,加号“+” 更符合我们的编码和阅读习惯;
  2. 方法3 StringUtils.join() 方法 适用于将ArrayList转换成字符串,就算90万条数据也只需68ms,可以省掉循环读取ArrayList的代码;
  3. 方法4 StringBuffer append() 方法 和 方法5 StringBuilder append() 方法 其实他们的本质是一样的,都是继承自AbstractStringBuilder,效率最高,大批量的数据处理最好选择这两种方法。
  4. 方法1 加号 “+” 拼接 和 方法2 String contact() 方法 的时间和空间成本都很高(分析在本文末尾),不能用来做批量数据的处理。
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.lang3.StringUtils;

public class TestString {

    private static final int max = 100;

    public void testPlus() {
        System.out.println(">>> testPlus() <<<");

        String str = "";

        long start = System.currentTimeMillis();

        for (int i = 0; i < max; i++) {
            str = str + "a";
        }

        long end = System.currentTimeMillis();

        long cost = end - start;

        System.out.println("   {str + \"a\"} cost=" + cost + " ms");
    }

    public void testConcat() {
        System.out.println(">>> testConcat() <<<");

        String str = "";

        long start = System.currentTimeMillis();

        for (int i = 0; i < max; i++) {
            str = str.concat("a");
        }

        long end = System.currentTimeMillis();

        long cost = end - start;

        System.out.println("   {str.concat(\"a\")} cost=" + cost + " ms");
    }

    public void testJoin() {
        System.out.println(">>> testJoin() <<<");

        long start = System.currentTimeMillis();

        List<String> list = new ArrayList<String>();

        for (int i = 0; i < max; i++) {
            list.add("a");
        }

        long end1 = System.currentTimeMillis();
        long cost1 = end1 - start;

        StringUtils.join(list, "");

        long end = System.currentTimeMillis();
        long cost = end - end1;

        System.out.println("   {list.add(\"a\")} cost1=" + cost1 + " ms");
        System.out.println("   {StringUtils.join(list, \"\")} cost=" + cost
                + " ms");
    }

    public void testStringBuffer() {
        System.out.println(">>> testStringBuffer() <<<");

        long start = System.currentTimeMillis();

        StringBuffer strBuffer = new StringBuffer();

        for (int i = 0; i < max; i++) {
            strBuffer.append("a");
        }
        strBuffer.toString();

        long end = System.currentTimeMillis();

        long cost = end - start;

        System.out.println("   {strBuffer.append(\"a\")} cost=" + cost + " ms");
    }

    public void testStringBuilder() {
        System.out.println(">>> testStringBuilder() <<<");

        long start = System.currentTimeMillis();

        StringBuilder strBuilder = new StringBuilder();

        for (int i = 0; i < max; i++) {
            strBuilder.append("a");
        }
        strBuilder.toString();

        long end = System.currentTimeMillis();

        long cost = end - start;

        System.out
                .println("   {strBuilder.append(\"a\")} cost=" + cost + " ms");
    }
}
  1. 执行100次, private static final int max = 100;
>>> testPlus() <<<
   {str + "a"} cost=0 ms
>>> testConcat() <<<
   {str.concat("a")} cost=0 ms
>>> testJoin() <<<
   {list.add("a")} cost1=0 ms
   {StringUtils.join(list, "")} cost=20 ms
>>> testStringBuffer() <<<
   {strBuffer.append("a")} cost=0 ms
>>> testStringBuilder() <<<
   {strBuilder.append("a")} cost=0 ms
  1. 执行1000次, private static final int max = 1000;
>>> testPlus() <<<
   {str + "a"} cost=10 ms
>>> testConcat() <<<
   {str.concat("a")} cost=0 ms
>>> testJoin() <<<
   {list.add("a")} cost1=0 ms
   {StringUtils.join(list, "")} cost=20 ms
>>> testStringBuffer() <<<
   {strBuffer.append("a")} cost=0 ms
>>> testStringBuilder() <<<
   {strBuilder.append("a")} cost=0 ms
  1. 执行1万次, private static final int max = 10000;
>>> testPlus() <<<
   {str + "a"} cost=150 ms
>>> testConcat() <<<
   {str.concat("a")} cost=70 ms
>>> testJoin() <<<
   {list.add("a")} cost1=0 ms
   {StringUtils.join(list, "")} cost=30 ms
>>> testStringBuffer() <<<
   {strBuffer.append("a")} cost=0 ms
>>> testStringBuilder() <<<
   {strBuilder.append("a")} cost=0 ms
  1. 执行10万次, private static final int max = 100000;
>>> testPlus() <<<
   {str + "a"} cost=4198 ms
>>> testConcat() <<<
   {str.concat("a")} cost=1862 ms
>>> testJoin() <<<
   {list.add("a")} cost1=21 ms
   {StringUtils.join(list, "")} cost=49 ms
>>> testStringBuffer() <<<
   {strBuffer.append("a")} cost=10 ms
>>> testStringBuilder() <<<
   {strBuilder.append("a")} cost=10 ms
  1. 执行20万次, private static final int max = 200000;
>>> testPlus() <<<
   {str + "a"} cost=17196 ms
>>> testConcat() <<<
   {str.concat("a")} cost=7653 ms
>>> testJoin() <<<
   {list.add("a")} cost1=20 ms
   {StringUtils.join(list, "")} cost=51 ms
>>> testStringBuffer() <<<
   {strBuffer.append("a")} cost=20 ms
>>> testStringBuilder() <<<
   {strBuilder.append("a")} cost=16 ms
  1. 执行50万次, private static final int max = 500000;
>>> testPlus() <<<
   {str + "a"} cost=124693 ms
>>> testConcat() <<<
   {str.concat("a")} cost=49439 ms
>>> testJoin() <<<
   {list.add("a")} cost1=21 ms
   {StringUtils.join(list, "")} cost=50 ms
>>> testStringBuffer() <<<
   {strBuffer.append("a")} cost=20 ms
>>> testStringBuilder() <<<
   {strBuilder.append("a")} cost=10 ms
  1. 执行90万次, private static final int max = 900000;
>>> testPlus() <<<
   {str + "a"} cost=456739 ms
>>> testConcat() <<<
   {str.concat("a")} cost=186252 ms
>>> testJoin() <<<
   {list.add("a")} cost1=20 ms
   {StringUtils.join(list, "")} cost=68 ms
>>> testStringBuffer() <<<
   {strBuffer.append("a")} cost=30 ms
>>> testStringBuilder() <<<
   {strBuilder.append("a")} cost=24 ms
查看源代码,以及简单分析

String contact 和 StringBuffer,StringBuilder 的源代码都可以在Java库里找到,有空可以研究研究。

  1. 其实每次调用contact()方法就是一次数组的拷贝,虽然在内存中是处理都是原子性操作,速度非常快,但是,最后的return语句会创建一个新String对象,限制了concat方法的速度。
public String concat(String str) {
        int otherLen = str.length();
        if (otherLen == 0) {
            return this;
        }
        int len = value.length;
        char buf[] = Arrays.copyOf(value, len + otherLen);
        str.getChars(buf, len);
        return new String(buf, true);
    }
  1. StringBuffer 和 StringBuilder 的append方法都继承自AbstractStringBuilder,整个逻辑都只做字符数组的加长,拷贝,到最后也不会创建新的String对象,所以速度很快,完成拼接处理后在程序中用strBuffer.toString()来得到最终的字符串。
/**
     * Appends the specified string to this character sequence.
     * <p>
     * The characters of the {@code String} argument are appended, in
     * order, increasing the length of this sequence by the length of the
     * argument. If {@code str} is {@code null}, then the four
     * characters {@code "null"} are appended.
     * <p>
     * Let <i>n</i> be the length of this character sequence just prior to
     * execution of the {@code append} method. Then the character at
     * index <i>k</i> in the new character sequence is equal to the character
     * at index <i>k</i> in the old character sequence, if <i>k</i> is less
     * than <i>n</i>; otherwise, it is equal to the character at index
     * <i>k-n</i> in the argument {@code str}.
     *
     * @param   str   a string.
     * @return  a reference to this object.
     */
    public AbstractStringBuilder append(String str) {
        if (str == null) str = "null";
        int len = str.length();
        ensureCapacityInternal(count + len);
        str.getChars(0, len, value, count);
        count += len;
        return this;
    }
/**
     * This method has the same contract as ensureCapacity, but is
     * never synchronized.
     */
    private void ensureCapacityInternal(int minimumCapacity) {
        // overflow-conscious code
        if (minimumCapacity - value.length > 0)
            expandCapacity(minimumCapacity);
    }
/**
     * This implements the expansion semantics of ensureCapacity with no
     * size check or synchronization.
     */
    void expandCapacity(int minimumCapacity) {
        int newCapacity = value.length * 2 + 2;
        if (newCapacity - minimumCapacity < 0)
            newCapacity = minimumCapacity;
        if (newCapacity < 0) {
            if (minimumCapacity < 0) // overflow
                throw new OutOfMemoryError();
            newCapacity = Integer.MAX_VALUE;
        }
        value = Arrays.copyOf(value, newCapacity);
    }
  1. 字符串的加号“+” 方法, 虽然编译器对其做了优化,使用StringBuilder的append方法进行追加,但是每循环一次都会创建一个StringBuilder对象,且都会调用toString方法转换成字符串,所以开销很大。

  注:执行一次字符串“+”,相当于 str = new StringBuilder(str).append("a").toString();

  1. 本文开头的地方统计了时间开销,根据上述分析再想想空间的开销。常说拿空间换时间,反过来是不是拿时间换到了空间呢,但是在这里,其实时间是消耗在了重复的不必要的工作上(生成新的对象,toString方法),所以对大批量数据做处理时,加号“+” 和 contact 方法绝对不能用,时间和空间成本都很高。

来源:cnblogs.com/twzheng/p/5923642.html

目录
相关文章
|
11天前
|
监控 Java Unix
6个Java 工具,轻松分析定位 JVM 问题 !
本文介绍了如何使用 JDK 自带工具查看和分析 JVM 的运行情况。通过编写一段测试代码(启动 10 个死循环线程,分配大量内存),结合常用工具如 `jps`、`jinfo`、`jstat`、`jstack`、`jvisualvm` 和 `jcmd` 等,详细展示了 JVM 参数配置、内存使用、线程状态及 GC 情况的监控方法。同时指出了一些常见问题,例如参数设置错误导致的内存异常,并通过实例说明了如何排查和解决。最后附上了官方文档链接,方便进一步学习。
|
20天前
|
Java 开发者
Java 中的 toString() 方法详解:为什么它如此重要?
在Java开发中,`toString()`方法至关重要,用于返回对象的字符串表示。默认实现仅输出类名和哈希码,信息有限且不直观。通过重写`toString()`,可展示对象字段值,提升调试效率与代码可读性。借助Lombok的`@Data`注解,能自动生成标准化的`toString()`方法,简化开发流程,尤其适合字段较多的场景。合理运用`toString()`,可显著提高开发效率与代码质量。
53 0
|
20天前
|
存储 Java 开发者
Java 中的 equals 方法:看似简单,实则深藏玄机
本文深入探讨了Java中`equals`方法的设计与实现。默认情况下,`equals`仅比较对象引用是否相同。以`String`类为例,其重写了`equals`方法,通过引用判断、类型检查、长度对比及字符逐一比对,确保内容相等的逻辑。文章还强调了`equals`方法需遵循的五大原则(自反性、对称性等),以及与`hashCode`的关系,避免集合操作中的潜在问题。最后,对比了`instanceof`和`getClass()`在类型判断中的优劣,并总结了正确重写`equals`方法的重要性,帮助开发者提升代码质量。
54 1
|
2月前
|
存储 JSON Java
《从头开始学java,一天一个知识点》之:方法定义与参数传递机制
**你是否也经历过这些崩溃瞬间?** - 看了三天教程,连`i++`和`++i`的区别都说不清 - 面试时被追问&quot;`a==b`和`equals()`的区别&quot;,大脑突然空白 - 写出的代码总是莫名报NPE,却不知道问题出在哪个运算符 🚀 这个系列就是为你打造的Java「速效救心丸」!我们承诺:每天1分钟,地铁通勤、午休间隙即可完成学习;直击痛点,只讲高频考点和实际开发中的「坑位」;拒绝臃肿,没有冗长概念堆砌,每篇都有可运行的代码标本。上篇:《输入与输出:Scanner与System类》 | 下篇剧透:《方法重载与可变参数》。
57 25
|
2月前
|
存储 缓存 安全
Java 字符串详解
本文介绍了 Java 中的三种字符串类型:String、StringBuffer 和 StringBuilder,详细讲解了它们的区别与使用场景。String 是不可变的字符串常量,线程安全但操作效率较低;StringBuffer 是可变的字符串缓冲区,线程安全但性能稍逊;StringBuilder 同样是可变的字符串缓冲区,但非线程安全,性能更高。文章还列举了三者的常用方法,并总结了它们在不同环境下的适用情况及执行速度对比。
82 17
|
2月前
|
存储 缓存 安全
Java字符串缓冲区
字符串缓冲区是用于处理可变字符串的容器,Java中提供了`StringBuffer`和`StringBuilder`两种实现。由于`String`类不可变,当需要频繁修改字符串时,使用缓冲区更高效。`StringBuffer`是一个线程安全的容器,支持动态扩展、任意类型数据转为字符串存储,并提供多种操作方法(如`append`、`insert`、`delete`等)。通过这些方法,可以方便地对字符串进行添加、插入、删除等操作,最终将结果转换为字符串。示例代码展示了如何创建缓冲区对象并调用相关方法完成字符串操作。
57 13
|
20天前
|
存储 安全 Java
Java 集合框架详解:系统化分析与高级应用
本文深入解析Java集合框架,涵盖List、Set、Map等核心接口及其常见实现类,如ArrayList、HashSet、HashMap等。通过对比不同集合类型的特性与应用场景,帮助开发者选择最优方案。同时介绍Iterator迭代机制、Collections工具类及Stream API等高级功能,提升代码效率与可维护性。适合初学者与进阶开发者系统学习与实践。
47 0
|
20天前
|
Java
java中一个接口A,以及一个实现它的类B,一个A类型的引用对象作为一个方法的参数,这个参数的类型可以是B的类型吗?
本文探讨了面向对象编程中接口与实现类的关系,以及里氏替换原则(LSP)的应用。通过示例代码展示了如何利用多态性将实现类的对象传递给接口类型的参数,满足LSP的要求。LSP确保子类能无缝替换父类或接口,不改变程序行为。接口定义了行为规范,实现类遵循此规范,从而保证了多态性和代码的可维护性。总结来说,接口与实现类的关系天然符合LSP,体现了多态性的核心思想。
28 0
|
2月前
|
安全 IDE Java
重学Java基础篇—Java Object类常用方法深度解析
Java中,Object类作为所有类的超类,提供了多个核心方法以支持对象的基本行为。其中,`toString()`用于对象的字符串表示,重写时应包含关键信息;`equals()`与`hashCode()`需成对重写,确保对象等价判断的一致性;`getClass()`用于运行时类型识别;`clone()`实现对象复制,需区分浅拷贝与深拷贝;`wait()/notify()`支持线程协作。此外,`finalize()`已过时,建议使用更安全的资源管理方式。合理运用这些方法,并遵循最佳实践,可提升代码质量与健壮性。
63 1
|
2月前
|
运维 Java 程序员
Java中的异常处理方法
本文深入剖析Java异常处理机制,介绍可检查异常、运行时异常和错误的区别与处理方式。通过最佳实践方法,如使用合适的异常类型、声明精确异常、try-with-resources语句块、记录异常信息等,帮助开发者提高代码的可靠性、可读性和可维护性。良好的异常处理能保证程序稳定运行,避免资源泄漏和潜在问题。
下一篇
oss创建bucket