IT自动化和人工智能将在2021年走向何方?

简介: 随着IT自动化和人工智能技术的进步和发展,IT人员的工作方式发生了重大变化。今年发生的突如其来的新冠疫情,也迫使大多数组织的员工在家远程工作。

如果疫情持续蔓延到2021年,那么组织将会继续让员工远程工作,并采用多种工作方式混合策略或鼓励永久性远程办公,因此很难预测2021年各行业的发展状况。


这样出现了一个明确的主题:IT自动化和人工智能(包括机器学习)将会继续成为IT专业人员重点关注的领域。以下是在2021年发挥重要作用的一些方法:




技术人员将会持续短缺




在自动化和数据方面采取的一个举措是组建合适的IT专业人员团队。但是,IT人才的持续短缺的情况可能使这种举措变得更加困难。未来十年,IT行业工作岗位预计将会增长12%。尽管计算机科学专业人才在过去十年中增长了10%,但仍然远远落后于其他技术行业的增长。


技术培训机构PerScholas公司社会风险投资执行副总裁DamienHoward表示,由于招聘标准、经验要求、H-1B签证的不确定性以及劳动力退休等因素,IT行业需求与可用技术人员之间的差距将进一步加剧。


Howard指出,在过去十年中,计算机科学领域的失业率一直是美国总体失业率的一半左右,即使在疫情期间,其失业率也一直保持相对较低的水平。根据Teksystems公司全球服务学习服务总监LeslieDeutsch引用的美国劳工统计局的数据,只有59%的计算机科学专业毕业生从事与其专业密切相关的工作。


Deutsch说,“自从2010年以来,IT人才市场需求持续增长,这意味着相关人才越来越难招募。”


其最终结果是什么?IT行为作为市场需求被压抑的一个行业,其短期(疫情期间)和长期(IT自动化和人工智能方向的未来发展)的业务将会发生重大变化。


他说:“组织跟上技术进步比以往任何时候都迫切。疫情只是增加了这些需求,随着向远程工作的转变,许多管道数字化改造项目变得更加紧迫。随着企业业务的调整,对于IT职业的需求只会继续增长。这意味着熟练的IT人才将比以往更加重要。”




使用机器数据




为了获得正确的数据,组织具有机器学习分析数据的潜力。Splunk公司首席技术倡导者Andi Mann说,机器学习中使用了三种类型的数据。关系数据是“行和列”,即电子表格和数据库。参考数据涉及语义数据,例如电子邮件和文档。第三类是机器数据,是由包括服务器、交换机和网络的系统生成的。


第三类数据是组织发展空间的巨大潜力。Mann说:“如果机器可以读取数据,那么可以阅读整个故事。这就是企业关注客户或客户互动或查看员工工作情况的方式。”


在Interop Digital会议上,Mann概述了组织可以通过机器数据揭示的一些见解。随着更多数字化工作的到来,这些数据在2021年的自动化和人工智能工作中将变得越来越重要。例如销售部门的员工的工作以前可能是现场交流或其他交互方式与客户达成合作来完成的。例如,使用这些数据,机器学习可用于突出显示聚类事件并做出预测,或查看当前事件(例如购买模式)。


Mann指出,有时机器数据的价值不在于模式,而在于异常或离群值。例如,无效的数字互动可以指向具有异常但具有负面体验的客户。




人工智能:炒作还是希望?




Quantarium公司首席执行官Romi Mahajan在一次行业会议上提出了一个令人关注的问题:媒体和行业对人工智能的宣传和呼吁是否代表了某种真实的东西?


Akvelon公司主管Cal Escue说。“每家媒体都在关注人工智能的进展,对于一些选择追求IT自动化和人工智能的企业来说,有一些边际的积极因素,而对于其他组织来说则是真正的积极因素,但很难找出其用例在哪里。”


Deriveone公司首席执行官Samir Saluja说,关于人工智能的许多信息都归因于外部压力,要求组织围绕它开展业务。但是,这种外部压力并不能影响其真正的潜力。


Saluja说:“当我想到人工智能时,基本上是在试图优化人类的过程。这可以采取两种形式:尝试做人类所做的事情(例如自然语言处理),或者尝试做人类做不到的事情(例如大规模数据分析)。”


人工智能的这些用途很重要,并将在2021年继续扩展。但是Saluja和Escue都表示,重要的是要记住,仍然需要IT专业人员来处理。


Escue说:“最终实现完全自动化的过程是无止境的,所有这些过程都需要协同工作,并与那些不自动化或智能的过程协同工作。IT自动化将会继续推进,并将使IT专业人员从事更多创造性工作或学习新技能,因此人工智能不能取代专业人员。人工智能技术将会用于优化某些人工流程。”

相关文章
|
2月前
|
机器学习/深度学习 人工智能 测试技术
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
EdgeMark是一个面向嵌入式AI的自动化部署与基准测试系统,支持TensorFlow Lite Micro、Edge Impulse等主流工具,通过模块化架构实现模型生成、优化、转换与部署全流程自动化,并提供跨平台性能对比,助力开发者在资源受限设备上高效选择与部署AI模型。
315 9
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
|
2月前
|
运维 Linux 网络安全
自动化真能省钱?聊聊运维自动化如何帮企业优化IT成本
自动化真能省钱?聊聊运维自动化如何帮企业优化IT成本
103 4
|
8月前
|
人工智能 自然语言处理 运维
AI时代 创作何为?AI如何重塑IT行业格局
本文探讨了AI时代创作的本质与IT行业的变革。在创作领域,AI带来范式革新、价值重构及能力升级;在IT行业,AI推动技术架构智能化、开发流程优化和业务模式创新。同时,文章分析了AI带来的挑战与机遇,并展望了AI与IT深度融合的未来,强调需关注伦理法规与跨领域发展,共同迎接智能化新时代。
1480 58
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI浪潮下普通IT人的职业成长路径探索
本文探讨了AI浪潮下普通IT从业者的成长路径,涵盖工作方式变革、技能升级与职业结构调整带来的挑战。文章强调夯实编程基础、学习AI知识、积累实践经验及提升软技能的重要性,并介绍生成式人工智能认证(GAI认证)对职业发展的助力,包括提升专业形象、增强竞争力和拓展职业道路。最后呼吁IT从业者积极拥抱变化,关注跨领域融合与技术伦理,建立个人品牌以应对未来机遇与挑战。
AI浪潮下普通IT人的职业成长路径探索
|
11月前
|
人工智能 运维 监控
自动化运维:提升IT效率的关键策略
在当今快速发展的信息技术时代,企业面临着不断增长的数据量和复杂的系统架构。为了保持竞争力,自动化运维成为提高IT部门效率和响应速度的关键策略。本文将探讨自动化运维的核心概念、实施步骤以及面临的挑战,旨在为IT专业人员提供实现高效运维管理的实用指南。
237 31
|
9月前
|
人工智能 运维 监控
CIO对AI代理持乐观态度,IT员工则不然
CIO对AI代理持乐观态度,IT员工则不然
|
11月前
|
人工智能 运维 自然语言处理
智能化运维:AI在IT运维领域的深度应用与实践####
本文探讨了人工智能(AI)技术在IT运维领域的深度融合与实践应用,通过分析AI驱动的自动化监控、故障预测与诊断、容量规划及智能决策支持等关键方面,揭示了AI如何赋能IT运维,提升效率、降低成本并增强系统稳定性。文章旨在为读者提供一个关于AI在现代IT运维中应用的全面视角,展示其实际价值与未来发展趋势。 ####
1548 4
|
11月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####

热门文章

最新文章