【算法千题案例】每日LeetCode打卡——95.唯一摩尔斯密码词

简介: 📢前言🌲原题样例:唯一摩尔斯密码词🌻C#方法:暴力法🌻Java 方法:哈希集合💬总结

📢前言

🚀 算法题 🚀

🌲 每天打卡一道算法题,既是一个学习过程,又是一个分享的过程😜

🌲 提示:本专栏解题 编程语言一律使用 C# 和 Java 两种进行解题

🌲 要保持一个每天都在学习的状态,让我们一起努力成为算法大神吧🧐!

🌲 今天是力扣算法题持续打卡第95天🎈!

🚀 算法题 🚀

🌲原题样例:唯一摩尔斯密码词

国际摩尔斯密码定义一种标准编码方式,将每个字母对应于一个由一系列点和短线组成的字符串, 比如:


‘a’ 对应 “.-” ,

‘b’ 对应 “-…” ,

‘c’ 对应 “-.-.” ,以此类推。

为了方便,所有 26 个英文字母的摩尔斯密码表如下:

[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]

给你一个字符串数组 words ,每个单词可以写成每个字母对应摩尔斯密码的组合。


例如,“cab” 可以写成 “-.-…–…” ,(即 “-.-.” + “.-” + “-…” 字符串的结合)。我们将这样一个连接过程称作 单词翻译 。

对 words 中所有单词进行单词翻译,返回不同 单词翻译 的数量。


示例1:

输入: words = ["gin", "zen", "gig", "msg"]
输出: 2
解释: 
各单词翻译如下:
"gin" -> "--...-."
"zen" -> "--...-."
"gig" -> "--...--."
"msg" -> "--...--."
共有 2 种不同翻译, "--...-." 和 "--...--.".

示例2:

输入:words = ["a"]
输出:1

提示:


1 <= words.length <= 100

1 <= words[i].length <= 12

words[i] 由小写英文字母组成

🌻C#方法:暴力法

直接把所有字母所对应的摩尔斯密码写到字典里,然后单词就可以翻译成对应的摩尔斯密码了。


唯一难点就在有没有耐心能把26个字母和26个密码一一对应地输到字典里。


代码:

public class Solution
{
    public int UniqueMorseRepresentations(string[] words)
    {
        Dictionary<char, string> Dic = new Dictionary<char, string>()
        {{'a',".-"},{'b',"-..."},{'c',"-.-."},{'d',"-.."},{'e',"."},{'f',"..-."},{'g',"--."},{'h',"...."},
         {'i',".."},{'j',".---"},{'k',"-.-"},{'l',".-.."},{'m',"--"},{'n',"-."},{'o',"---"},{'p',".--."},
         {'q',"--.-"},{'r',".-."},{'s',"..."},{'t',"-"},{'u',"..-"},{'v',"...-"},{'w',".--"},{'x',"-..-"},
         {'y',"-.--"},{'z',"--.."}
        };//一个一个将26个字母所对应的摩斯密码输进去,key为字母,value为对应的密码。
        StringBuilder SB = new StringBuilder();//新建一个StringBuilder,经常改字符串用这个快一点,因为后面每个字母都要改字符串,所以这里用这个。
        Dictionary<String, int> Dic2 = new Dictionary<string, int>();//这个字典用来储存不相同的摩斯密码。
        foreach(string i in words)//遍历words里的所有单词。
        {
            for(int j = 0; j < i.Length; j++)//遍历单词的字母
            {
                //将每个字母所对应的摩斯密码连起来。
                SB.Append(Dic[  i[j]/* i[j]为字母,Dic[i[j]]代表这个字母在字典中的Value*/  ]  );
            }
          //↓遍历完一个单词后,如果Dic2中没有储存这条摩斯密码,则将其加入进去,value设置为1(这个随便,只要保证能知道这密码存在就行了)。
            if (!Dic2.ContainsKey(SB.ToString()))
            {
                Dic2.Add(SB.ToString(),1);
            }
         SB.Clear();//最后,将StringBuilder清空,因为遍历到下一串单词还用用上它。
        }
        return Dic2.Count;//最后只要返回Dic2的数量就行了,因为只加不重复的密码进去,所以它的数量就代表了不重复的密码。
    }
}
这里要感谢原文链接作者~
链接:https://leetcode-cn.com/problems/unique-morse-code-words/solution/bao-li-cha-zi-dian-cha-jiu-wan-shi-liao-by-huang-g/

执行结果

通过
执行用时:88 ms,在所有 C# 提交中击败了25.50%的用户
内存消耗:35.4 MB,在所有 C# 提交中击败了29.90%的用户

🌻Java 方法:哈希集合

思路解析

我们将数组 word 中的每个单词转换为摩尔斯码

并加入哈希集合(HashSet)中,最终的答案即为哈希集合中元素的个数。

代码:

class Solution {
    public int uniqueMorseRepresentations(String[] words) {
        String[] MORSE = new String[]{".-","-...","-.-.","-..",".","..-.","--.",
                         "....","..",".---","-.-",".-..","--","-.",
                         "---",".--.","--.-",".-.","...","-","..-",
                         "...-",".--","-..-","-.--","--.."};
        Set<String> seen = new HashSet();
        for (String word: words) {
            StringBuilder code = new StringBuilder();
            for (char c: word.toCharArray())
                code.append(MORSE[c - 'a']);
            seen.add(code.toString());
        }
        return seen.size();
    }
}

执行结果

通过
执行用时:1 ms,在所有 Java  提交中击败了100.00%的用户
内存消耗:36.4 MB,在所有 Java 提交中击败了40.00%的用户

复杂度分析

时间复杂度:O( n )
空间复杂度:O(1)

💬总结

  • 今天是力扣算法题打卡的第九十五天!
  • 文章采用 C#Java 两种编程语言进行解题
  • 一些方法也是参考力扣大神写的,也是边学习边分享,再次感谢算法大佬们
  • 那今天的算法题分享到此结束啦,明天再见!


相关文章
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
12月前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
9062 71
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
313 0
|
存储 算法 Java
解锁“分享文件”高效密码:探秘 Java 二叉搜索树算法
在信息爆炸的时代,文件分享至关重要。二叉搜索树(BST)以其高效的查找性能,为文件分享优化提供了新路径。本文聚焦Java环境下BST的应用,介绍其基础结构、实现示例及进阶优化。BST通过有序节点快速定位文件,结合自平衡树、多线程和权限管理,大幅提升文件分享效率与安全性。代码示例展示了文件插入与查找的基本操作,适用于大规模并发场景,确保分享过程流畅高效。掌握BST算法,助力文件分享创新发展。
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
|
JavaScript 算法 安全
深度剖析:共享文件怎么设置密码和权限的 Node.js 进阶算法
在数字化时代,共享文件的安全性至关重要。本文聚焦Node.js环境,介绍如何通过JavaScript对象字面量构建数据结构管理文件安全信息,包括使用`bcryptjs`库加密密码和权限校验算法,确保高效且安全的文件共享。通过实例代码展示加密与权限验证过程,帮助各行业实现严格的信息资产管理与协作。
|
存储 算法 测试技术
【狂热算法篇】探秘图论之 Floyd 算法:解锁最短路径的神秘密码(通俗易懂版)
【狂热算法篇】探秘图论之 Floyd 算法:解锁最短路径的神秘密码(通俗易懂版)
|
算法 安全 调度
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
|
存储 人工智能 算法
【深度优先搜索篇】走迷宫的魔法:算法如何破解迷宫的神秘密码
【深度优先搜索篇】走迷宫的魔法:算法如何破解迷宫的神秘密码

热门文章

最新文章