机器学习task1

简介: 天池龙珠计划机器学习训练营

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高

逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。

逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

相关文章
|
6月前
|
机器学习/深度学习 算法 Python
集成学习(上):机器学习基础task1-熟悉机器学习的三大主要任务
集成学习(上):机器学习基础task1-熟悉机器学习的三大主要任务
73 0
|
6月前
|
机器学习/深度学习 数据采集 算法
集成学习(上):机器学习基础task2-掌握基本的回归模型
集成学习(上):机器学习基础task2-掌握基本的回归模型
64 0
|
6月前
|
机器学习/深度学习 人工智能 分布式计算
机器学习(一)Spark机器学习基础
机器学习(一)Spark机器学习基础
64 0
|
机器学习/深度学习 数据采集 人工智能
机器学习pai
机器学习pai
648 5
|
机器学习/深度学习 监控 算法
机器学习模型的生命周期
机器学习模型的生命周期
184 0
|
机器学习/深度学习 数据挖掘 Go
《深度学习》李宏毅 -- task1机器学习介绍
机器学习(Machine Learning),就是让机器自动找函数。如语音识别,就是让机器找一个函数,输入是声音信号,输出是对应的文字。如下棋,就是让机器找一个函数,输入是当前棋盘上黑子白子的位置,输出是下一步应该落子何处。
152 0
《深度学习》李宏毅 -- task1机器学习介绍
|
机器学习/深度学习
《深度学习》李宏毅 -- task7总结
进一步学习机器学习基础,希望以后有机会多多实践,为以后进入这个领域做准备。
124 0
《深度学习》李宏毅 -- task7总结
|
机器学习/深度学习 传感器 资源调度
《深度学习》李宏毅 -- task2 回归
Regression 就是找到一个函数 function ,通过输入特征 x,输出一个数值 Scalar。
107 0
《深度学习》李宏毅 -- task2 回归
|
机器学习/深度学习
《深度学习》李宏毅 -- task5网络技巧设计
局部最小值saddle point和鞍点local minima
115 0
《深度学习》李宏毅 -- task5网络技巧设计
|
机器学习/深度学习
《深度学习》李宏毅 -- task6卷积神经网络
CNN常常被用在影像处理上,比如说你想要做影像的分类,就是training一个neural network,input一张图片,然后把这张图片表示成里面的像素(pixel),也就是很长很长的矢量(vector)。output就是(假如你有1000个类别,output就是1000个dimension)dimension。
139 0
《深度学习》李宏毅 -- task6卷积神经网络
下一篇
无影云桌面