JVM GC原理及调优的基本思路

简介: 若观察到Tomcat进程CPU使用率较高,并在GC日志中发现GC次数比较频繁、GC停顿时间长,说明需优化GC。CMS和G1是时下使用率比较高的两款垃圾收集器,从Java 9开始,G1是默认垃圾收集器。

若观察到Tomcat进程CPU使用率较高,并在GC日志中发现GC次数比较频繁、GC停顿时间长,说明需优化GC。

CMS和G1是时下使用率比较高的两款垃圾收集器,从Java 9开始,G1是默认垃圾收集器。

CMS vs G1

CMS收集器

将Java堆分为新生代(Young)或老年代(Old),因为研究表明,超过90%的对象在第一次GC时就被回收掉,仅少数对象会存活较长。

image.png

CMS还将新生代内存空间分为幸存者空间(Survivor)和伊甸园空间(Eden):

  • 新的对象始终在Eden空间上创建
  • 一旦一个对象在一次垃圾收集后还幸存,就会被移动到幸存者空间


当一个对象在多次垃圾收集之后还存活时,它会移动到年老代。这样做的目的是在年轻代和年老代采用不同的收集算法,以达到较高的收集效率,比如在年轻代采用复制-整理算法,在年老代采用标记-清理算法。

G1收集器

与CMS相比,G1收集器有两大特点:


  • G1可以并发完成大部分GC的工作,这期间不会“Stop-The-World”
  • G1使用非连续空间,这使G1能够有效地处理非常大的堆。此外,G1可以同时收集年轻代和年老代。G1将堆分成许多(通常几百个)小区域。这些区域固定大小(默认大约2M)。每个区域都分配给一个空间。

image.png

U表示“未分配”区域。G1将堆拆分成小的区域:可以做局部垃圾回收,而无需每次都回收整个区域,这样回收的停顿时间会比较短。

收集过程

  • 将所有存活的对象将从收集的区域复制到未分配的区域,比如收集的区域是Eden空间,把Eden中的存活对象复制到未分配区域,这个未分配区域就成了Survivor空间。理想情况下,如果一个区域全是垃圾(意味着一个存活的对象都没有),则可以直接将该区域声明为“未分配”
  • 为了优化收集时间,G1总是优先选择垃圾最多的区域,从而最大限度地减少后续分配和释放堆空间所需的工作量。这也是G1收集器名字的由来——Garbage-First。

GC调优原则

GC有代价,因此根本原则是每次GC都回收尽可能多的对象。

针对CMS和G1有相应策略。

CMS收集器

最重要的是合理地设置年轻代和年老代大小。

  • 年轻代太小,会导致频繁Minor GC,并且很有可能存活期短的对象也不能被回收,GC的效率就不高
  • 年老代太小,容纳不下从年轻代过来的新对象,会频繁触发单线程Full GC,导致较长时间的GC暂停,影响Web应用的响应时间。

G1收集器

不推荐直接设置年轻代大小,和CMS不不同,因为G1会根据算法动态决定年轻代和年老代大小。

因此对于G1,最关心Java堆总大小(-Xmx)。

-XX:MaxGCPauseMillis = n

限制最大GC暂停时间,以尽量不影响请求的响应时间。G1将根据先前收集信息及检测到的垃圾量,估计它可以立即收集的最大区域数量,从而尽量保证GC时间不会超出这个限制。因此G1更“智能”,使用更简单。

内存调优实战

下面我通过一个例子实战一下Java堆设置得过小,导致频繁的GC,我们将通过GC日志分析工具来观察GC活动并定位问题。

1.首先我们建立一个Spring Boot程序,作为我们的调优对象

@RestController
public class GcTestController {
    private Queue<Greeting> objCache =  new ConcurrentLinkedDeque<>();
    @RequestMapping("/greeting")
    public Greeting greeting() {
        Greeting greeting = new Greeting("Hello World!");
        if (objCache.size() >= 200000) {
            objCache.clear();
        } else {
            objCache.add(greeting);
        }
        return greeting;
    }
}
@Data
@AllArgsConstructor
class Greeting {
   private String message;
}

就是创建了一个对象池,当对象池中的对象数到达200000时才清空一次,用来模拟年老代对象。

命令启动测试程序:

java -Xmx32m -Xss256k -verbosegc -Xlog:gc*,gc+ref=debug,gc+heap=debug,gc+age=trace:file=gc-%p-%t.log:tags,uptime,time,level:filecount=2,filesize=100m -jar target/demo-0.0.1-SNAPSHOT.jar

我给程序设置的堆的大小为32MB,目的是能让我们看到Full GC。除此之外,我还打开了verbosegc日志,请注意这里我使用的版本是Java 12,默认的垃圾收集器是G1。


  • 使用JMeter压测工具向程序发送测试请求,访问的路径是/greeting。
  • 使用GCViewer工具打开GC日志

image.png

上部的蓝线表示已使用堆大小,周期上下震荡,这是对象池要扩展到200000才会清空。

绿线表示新生代GC活动,当堆使用率上去了,会触发频繁GC活动。

竖线表示Full GC,伴随着Full GC,蓝线会下降,这说明Full GC收集了老年代中的对象。

竖线表示Full GC,伴随着Full GC,蓝线会下降,这说明Full GC收集了老年代中的对象。


综上,Java堆大小不够:

  • GC活动频繁
    年轻代GC(绿色线)和年老代GC(黑色线)都比较密集。这说明内存空间不够,也就是Java堆的大小不够。
  • Java的堆中对象在GC之后能够被回收
    说明不是内存泄漏。


GCViewer还发现累计GC暂停时间有55.57秒:

image.png

因此我们的解决方案是调大Java堆的大小,像下面这样:

java -Xmx2048m -Xss256k -verbosegc -Xlog:gc*,gc+ref=debug,gc+heap=debug,gc+age=trace:file=gc-%p-%t.log:tags,uptime,time,level:filecount=2,filesize=100m -jar target/demo-0.0.1-SNAPSHOT.jar

生成的新的GC log分析图如下:

image.png

你可以看到,没有发生Full GC,并且年轻代GC也没有那么频繁了,并且累计GC暂停时间只有3.05秒。

image.png

总结

CMS来说,我们要合理设置年轻代和年老代的大小。你可能会问该如何确定它们的大小呢?这是一个迭代的过程,可以先采用JVM的默认值,然后通过压测分析GC日志。


如果我们看年轻代的内存使用率处在高位,导致频繁的Minor GC,而频繁GC的效率又不高,说明对象没那么快能被回收,这时年轻代可以适当调大一点。


如果我们看年老代的内存使用率处在高位,导致频繁的Full GC,这样分两种情况:如果每次Full GC后年老代的内存占用率没有下来,可以怀疑是内存泄漏;如果Full GC后年老代的内存占用率下来了,说明不是内存泄漏,我们要考虑调大年老代。


对于G1收集器来说,我们可以适当调大Java堆,因为G1收集器采用了局部区域收集策略,单次垃圾收集的时间可控,可以管理较大的Java堆。

若年轻代和年老代都设置很大,会咋样?

设置过大,回收频率会降低,导致单次回收时间过长,因为需要回收的对象更多,导致GC stop the world时间过长,引起GC停顿时间过长,导致请求无法及时处理

年轻代设置过大

  • 生命周期长的对象会长时间停留在年轻代,在S0和S1来回复制,增加复制开销
  • 年轻代太大会增加YGC每次停顿的时间,不过通过根节点遍历,OopMap,old scan等优化手段这一部分的开销其实比较少
  • 浪费内存

老年代设置过大

  • 降低FGC频率,有些堆外内存比如直接内存,需要靠FGC辅佐回收的,就会无法释放。万一剩余的堆外内存不够程序也会宕机
  • 单次FGC时间变长,如果在夜深人静的时候主动触发FGC内啥影响,如果白天业务繁忙的时候就凉凉
  • 增加YGC时间,old scan阶段会扫描老年代,而且这个阶段耗时在YGC总比重很大


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
存储 安全 算法
深入剖析JVM内存管理与对象创建原理
JVM内存管理,JVM运行时区域,直接内存,对象创建原理。
40 2
|
2月前
|
算法 Java 关系型数据库
掌握这3个技巧,你也可以秒懂JAVA性能调优和jvm垃圾回收
JVM 是一个虚拟化的操作系统,类似于 Linux 和 Window,只是他被架构在了操作系统上进行接收 class 文件并把 class 翻译成系统识别的机器码进行执行,即 JVM 为我们屏蔽了不同操作系统在底层硬件和操作指令的不同。
22 0
|
24天前
|
缓存 Java C#
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(一)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
66 0
|
7天前
|
监控 前端开发 安全
JVM工作原理与实战(十四):JDK9及之后的类加载器
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了JDK8及之前的类加载器、JDK9及之后的类加载器等内容。
|
7天前
|
监控 Java 关系型数据库
JVM工作原理与实战(十三):打破双亲委派机制-线程上下文类加载器
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了打破双亲委派机制的方法、线程上下文类加载器等内容。
|
7天前
|
存储 XML 监控
JVM工作原理与实战(三):字节码文件的组成
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了字节码文件的基础信息、常量池、方法、字段、属性等内容。
|
1月前
|
算法 Oracle Java
【JVM】了解JVM中动态判断对象年龄的原理
【JVM】了解JVM中动态判断对象年龄的原理
26 0
|
2月前
|
存储 算法 Java
工作5年,我竟发现JVM只用这4个技巧就可以轻松调优
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
10 0
|
2月前
|
Java
|
1月前
|
存储 算法 安全
【JVM】深入理解JVM对象内存分配方式
【JVM】深入理解JVM对象内存分配方式
26 0