Java内存模型相关原则详解

简介: Java内存模型相关原则详解

在《Java内存模型(JMM)详解》一文中我们已经讲到了Java内存模型的基本结构以及相关操作和规则。而Java内存模型又是围绕着在并发过程中如何处理原子性、可见性以及有序性这三个特征来构建的。本篇文章就带大家了解一下相关概念、原则等内容。

原子性

原子性即一个操作或一系列是不可中断的。即使是在多个线程的情况下,操作一旦开始,就不会被其他线程干扰。

比如,对于一个静态变量int x两条线程同时对其赋值,线程A赋值为1,而线程B赋值为2,不管线程如何运行,最终x的值要么是1,要么是2,线程A和线程B间的操作是没有干扰的,这就是原子性操作,不可被中断的。

Java内存模型对以下操作保证其原子性:read,load,assign,use,store,write。我们可以大致认为基本数据类型的访问读写是具备原子性的(前面也提到了long和double类型的“半个变量”情况,不过几乎不会发生)。

从Java内存模型底层来看有上面的原子性操作,但针对用户来说,也就是我们编写Java的程序,如果需要更大范围的原子性保障,就需要同步关键字——synchronized来保障了。也就是说synchronized中的操作也具有原子性。

可见性

可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。

Java内存模型是通过变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值,将主内存作为传递媒介。可回顾一下上篇文章的图。image.png无论普通变量还是volatile变量都是如此,只不过volatile变量保证新值能够立马同步到主内存,使用时也立即从主内存刷新,保证了多线程操作时变量的可见性。而普通变量不能够保证。

除了volatile,synchronized和final也能够实现可见性。

synchronized实现的可见性是通过“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中”来保证的。

主要有两个原则:线程解锁前,必须把共享变量的最新值刷新到主内存中;线程加锁时,将清空工作内存中共享变量的值,从而使用共享变量时需要从主内存中重新读取最新的值。

final的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去,那在其他线程中就能看见final的值。

有序性

在Java内存模型中有序性可归纳为这样一句话:如果在本线程内观察,所有操作都是有序的,如果在一个线程中观察另一个线程,所有操作都是无序的。

有序性是指对于单线程的执行代码,执行是按顺序依次进行的。但在多线程环境中,则可能出现乱序现象,因为在编译过程会出现“指令重排”,重排后的指令与原指令的顺序未必一致。

因此,上面归纳的前半句指的是线程内保证串行语义执行,后半句则指指“令重排现”象和“工作内存与主内存同步延迟”现象。

同样,Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性。

指令重排

计算机执行指令经过编译之后形成指令序列。一般情况,指令序列是会输出确定的结果,且每一次的执行都有确定的结果。

CPU和编译器为了提升程序执行的效率,会按照一定的规则允许进行指令优化。但代码逻辑之间是存在一定的先后顺序,并发执行时按照不同的执行逻辑会得到不同的结果。

  • 编译器优化重排序:编译器在不改变单线程程序语义的前提下,重新安排语句执行顺序。
  • 指令级并行重排序:处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应及其的执行顺序。
  • 内存系统的重排序:处理器使用缓存和读/写缓冲区,使得加载和存储操作看上去可能是乱序执行。

举个例来说明一下多线程中可能出现的重排现象:

class ReOrderDemo {
    int a = 0;
    boolean flag = false;
    public void write() {
        a = 1;                   //1
        flag = true;             //2
    }
    public void read() {
        if (flag) {                //3
            int i =  a * a;        //4
            ……
        }
    }
}

在上面的代码中,单线程执行时,read方法能够获得flag的值进行判断,获得预期结果。但在多线程的情况下就可能出现不同的结果。

比如,当线程A进行write操作时,由于指令重排,write方法中的代码执行顺序可能会变成下面这样:

flag = true;             //2
a = 1;                   //1

也就是说可能会先对flag赋值,然后再对a赋值。这在单线程中并不影响最终输出的结果。

但如果与此同时,B线程在调用read方法,那么就有可能出现flag为true但a还是0,这时进入第4步操作的结果就为0,而不是预期的1了。

请记住,指令重排只会保证单线程中串行语义执行的一致性,不会关心多线程间语义的一致性。这也是为什么在写单例模式时需要考虑添加volatile关键词来修饰,就是为了防止指令重排导致的问题。

JMM提供的解决方案

在了解了原子性、可见性以及有序性问题后,看看JMM是提供了什么机制来保证这些特性的。

原子性问题,除了JVM自身提供的对基本数据类型读写操作的原子性外,对于方法级别或者代码块级别的原子性操作,可以使用synchronized关键字或者重入锁(ReentrantLock)保证程序执行的原子性。

而工作内存与主内存同步延迟现象导致的可见性问题,可以使用synchronized关键字或者volatile关键字解决。它们都可以使一个线程修改后的变量立即对其他线程可见。

对于指令重排导致的可见性问题和有序性问题,则可以利用volatile关键字解决。volatile的另一个作用就是禁止重排序优化。

除了靠sychronized和volatile关键字之外,JMM内部还定义一套happens-before(先行发生)原则来保证多线程环境下两个操作间的原子性、可见性以及有序性。

先行发生原则

如果仅靠sychronized和volatile关键字来保证原子性、可见性以及有序性,那么编写并发程序会十分麻烦。为此在Java内存模型中,还提供了happens-before原则来辅助保证程序执行的原子性、可见性以及有序性的问题。该原则是判断数据是否存在竞争、线程是否安全的依据。

happens-before规则:

  • 程序次序规则:在一个线程内,程序前面的操作先于后面的操作。
  • 监视器锁规则:一个unlock操作先于后面对同一个锁的lock操作发生。
  • volatile变量规则:对一个volatile变量的写操作先行发生于后面对这个变量的读操作,也就是说读取的值肯定是最新的。
  • 线程启动规则:Thread对象的start()方法调用先行发生于此线程的每一个动作。
  • 线程加入规则:Thread对象的结束先行发生于join()方法返回。
  • 线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过interrupted()方法检测到是否有中断发生。
  • 对象终结规则:一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
  • 传递性:如果操作A先行发生于操作B,操作B先行发生于操作C,那么操作A先行发生于操作C。

还拿上面的具体代码来进行说明:

class ReOrderDemo {
    int a = 0;
    boolean flag = false;
    public void write() {
        a = 1;                   //1
        flag = true;             //2
    }
    public void read() {
        if (flag) {                //3
            int i =  a * a;        //4
            ……
        }
    }
}

线程A调用write()方法,线程B调用read()方法,线程A先(时间上的先后)于线程B启动,那么线程B读取到a的值是多少呢?

现在依据8条原则来进行对照。

两个方法分别由线程A和线程B调用,不在同一个线程中,因此程序次序原则不适用。

没有write()方法和read()方法都没有使用同步手段,监视器锁规则不适用。

没有使用volatile关键字,volatile变量原则不适用。

与线程启动、终止、中断、对象终结规则、传递性都没有关系,不适用。

因此,线程A和线程B的启动时间虽然有先后,但线程B执行结果却是不确定,也是说上述代码没有适合8条原则中的任意一条,所以线程B读取的值自然也是不确定的,换句话说就是线程不安全的。

修复这个问题的方式很简单,要么给write()方法和read()方法添加同步手段,如synchronized。或者给变量flag添加volatile关键字,确保线程A修改的值对线程B总是可见。

小结

在这篇文章中介绍了Java内存模型中一些原则,其衍生出来保证这些原则的方式和方法。也是为我们下面学习volatile这个面试官最爱问的关键字的做好铺垫。欢迎关注微信公众号“程序新视界”继续学习。

目录
相关文章
|
25天前
|
算法 安全 Java
Java内存管理:深入理解垃圾收集器
在Java的世界里,内存管理是一块基石,它支撑着应用程序的稳定运行。本文将带你走进Java的垃圾收集器(GC),探索它是如何默默守护着我们的内存安全。我们将从垃圾收集的基本概念出发,逐步深入到不同垃圾收集器的工作机制,并通过实例分析它们在实际应用中的表现。文章不仅旨在提升你对Java内存管理的认识,更希望你能通过这些知识优化你的代码,让程序运行更加高效。
38 3
|
2月前
|
Kubernetes Cloud Native Java
云原生之旅:从容器到微服务的演进之路Java 内存管理:垃圾收集器与性能调优
【8月更文挑战第30天】在数字化时代的浪潮中,企业如何乘风破浪?云原生技术提供了一个强有力的桨。本文将带你从容器技术的基石出发,探索微服务架构的奥秘,最终实现在云端自由翱翔的梦想。我们将一起见证代码如何转化为业务的翅膀,让你的应用在云海中高飞。
|
11天前
|
监控 算法 Java
Java中的内存管理:理解Garbage Collection机制
本文将深入探讨Java编程语言中的内存管理,特别是垃圾回收(Garbage Collection, GC)机制。我们将从基础概念开始,逐步解析垃圾回收的工作原理、不同类型的垃圾回收器以及它们在实际项目中的应用。通过实际案例,读者将能更好地理解Java应用的性能调优技巧及最佳实践。
41 0
|
6天前
|
存储 缓存 Java
java线程内存模型底层实现原理
java线程内存模型底层实现原理
java线程内存模型底层实现原理
|
1天前
|
存储 算法 Java
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
本文介绍了 JVM 的内存区域划分、类加载过程及垃圾回收机制。内存区域包括程序计数器、堆、栈和元数据区,每个区域存储不同类型的数据。类加载过程涉及加载、验证、准备、解析和初始化五个步骤。垃圾回收机制主要在堆内存进行,通过可达性分析识别垃圾对象,并采用标记-清除、复制和标记-整理等算法进行回收。此外,还介绍了 CMS 和 G1 等垃圾回收器的特点。
10 0
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
|
8天前
|
Java 编译器
深入理解Java内存模型:从基础到高级
本文旨在通过通俗易懂的方式,引导读者深入理解Java内存模型(JMM)的核心概念和工作原理。我们将从简单的基础知识入手,逐步探讨重排序、顺序一致性问题以及volatile关键字的实现机制等高级主题。希望通过这篇文章,你能够对Java内存模型有一个清晰、全面的认识,并在实际编程中有效地避免并发问题。
|
5天前
|
存储 算法 Java
深入理解Java内存管理
本文将通过通俗易懂的语言,详细解析Java的内存管理机制。从JVM的内存结构入手,探讨堆、栈、方法区等区域的具体作用和原理。进一步分析垃圾回收机制及其调优方法,最后讨论内存泄漏的常见场景及防范措施。希望通过这篇文章,帮助读者更好地理解和优化Java应用的内存使用。
|
10天前
|
监控 算法 Java
Java中的内存管理与垃圾回收机制
本文将深入探讨Java编程语言中的内存管理方式,特别是垃圾回收(Garbage Collection, GC)机制。我们将了解Java虚拟机(JVM)如何自动管理内存,包括对象创建、内存分配以及不使用对象的回收过程。同时,我们还将讨论不同的垃圾回收算法及其在不同场景下的应用。
|
9天前
|
监控 算法 Java
深入理解Java中的垃圾回收机制在Java编程中,垃圾回收(Garbage Collection, GC)是一个核心概念,它自动管理内存,帮助开发者避免内存泄漏和溢出问题。本文将探讨Java中的垃圾回收机制,包括其基本原理、不同类型的垃圾收集器以及如何调优垃圾回收性能。通过深入浅出的方式,让读者对Java的垃圾回收有一个全面的认识。
本文详细介绍了Java中的垃圾回收机制,从基本原理到不同类型垃圾收集器的工作原理,再到实际调优策略。通过通俗易懂的语言和条理清晰的解释,帮助读者更好地理解和应用Java的垃圾回收技术,从而编写出更高效、稳定的Java应用程序。
|
16天前
|
监控 算法 Java
Java中的内存管理:理解垃圾回收机制的深度剖析
在Java编程语言中,内存管理是一个核心概念。本文将深入探讨Java的垃圾回收(GC)机制,解析其工作原理、重要性以及优化方法。通过本文,您不仅会了解到基础的GC知识,还将掌握如何在实际开发中高效利用这一机制。
下一篇
无影云桌面