保险大数据的实践与实战

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 保险大数据的实践与实战

数据并不是万能的。


以保险业为例,一方面大数据为保险业带来了新的商业价值,既改变了管理者的经营理念和决策支持,也促进深入有效发掘客户需求。而另一方面,大数据也变成了双刃剑,互联网公司凭借更完整的数据链条,对传统保险业形成新的压力。


大数据时代,对保险业是好还是坏?


image.png

泰康人寿数据信息中心大数据部负责人周雄志


泰康人寿数据信息中心大数据部负责人周雄志,在2016百分点数据与价值国际论坛后接受了笔者的访谈,在泰康人寿对大数据的实际应用中,保险大数据的实践和实战,又有哪些深刻的意义?


在实践中寻找大数据的平衡点


在2012年,中国互联网异军突起的杀进金融领域,尽管还未真正走出互联网金融的新路,但各金融行业如何与互联网更好地结合,为客户提供更加创新的产品和人性化的服务,已成为各金融机构越来越密集研究的课题。


与金融业息息相关的保险业,也开始感受到压力的出现。在很多互联网金融平台上,开始出现了越来越多的保险业务,还有一些垂直领域的应用上也开始集成基本的保险服务。这是保险业的面临的挑战。


不过周雄志则认为,保险业相对于互联网行业而言,还不算是个强需求,而是一个弱需求“目前在中国来讲,保险在老百姓的意识里,主动的保障意识还没那么强烈,所以这个弱需求决定了保险被互联网冲击还不明显”。不过,保险业显然已经意识到互联网的契机,大数据对业务的促进,以及电子化渠道的普及,也让保险业坚定了转型的决心。在挑战和机遇之间,这个平衡点也许就是大数据。


其实,保险业和大数据一直有千丝万缕的关系。


在大数据背景下,除了对数据的纵向分析之外,可以从横向来分析消费者的需求。客户的具体收入水平、文化程度、价值观念,也会影响其对保险的态度,通过对网络消费的数额、职业、学历等数据所进行的分析,也可以作为保险需求分析的重要部分。还可以通过搜集互联网用户的地域分布,搜索关键词、购物习惯、流览记录和兴趣爱好等一系列的数据,在保险产品消费中实现需求定向、偏好定向,真正做到精准化、个性化营销。


周雄志认为,保险的特点就是按照发生概率来做设计产品。一定是有相当的概率发生才会有需求有市场。不同的发生概率不同程度启发客户的需求,譬如高铁发生意外的概率是非常小的,而自驾发生意外的概率就大得多,客户对于自驾意外险的需求就比高铁意外险的需求强烈得多。在各种场景中能否抓住那些打动客户心弦的概率事件,能否通过大数据精准量化这个概率从而进行合理定价,就决定了能否设计出好的保险产品,这就是大数据给保险业带来的价值。春运抢票险就是一个很好的例子,春运期间大部分人都要买火车票回老家过年,虽然四通八达的高铁大大提高了运力,但是仍然有一定的概率买不到回家的火车票,这就是一种特别适合保险的场景,有一定相当的概率发生,但不是绝对发生的,客户有这样的心理预期,就有动力为这个概率买单。如果没有互联网大数据支持,这个保险产品就不会产生。


所以,任何一个行业都可能忽视大数据,但保险业不能。保险业基于大数法则、以精算为核心,自诞生之日起就非常重视数据,更何况是大数据。今天,大数据已经能够支持保险业在产品研发上进行创新,这在很多传统行业中仍然是不可想象的。


据了解,这些实践的经验,是泰康人寿在多年的数据研究中得出来的。就如周雄志所说,“泰康在大数据应用方面有所成绩,是因为泰康过去这十多年持续不断的在持续建设数据平台,完善数据应用。不断的把各种各样的信息进行整合处理,有这些积累才能在上面的去开展更深层次的数据建模、算法分析,但如果让有些公司自己从头开始去做,那么怎么把大量散落的数据整合连接起来都会是一个非常困难的事情。”image.gif

image.png

看得出,大数据并不是能一蹴而就,对保险业的改造也只能源于实践。一直以来,泰康都是互联网时代的积极创新者,不断地加强数据的规模、活性、维度以及收集、分析、利用数据的能力,将之成为企业核心竞争力的关键。而对大数据的掌控和驾驭能力越强,市场竞争优势越明显。


实战驱动的保险业 大数据才有未来


当然,必须承认大数据并不是一个新鲜的概念。没有大数据的时候,数据也在产生应有的价值。周雄志认为,“对于保险业而言,并没有什么大数据和小数据的区分。实际上是我们在数据获取的深度和广度上面发生了变化,这样就使得我们在各种场景中,我们对数据的使用发生了变化。”


过去制约大数据在保险业发挥更大价值的首先是计算能力,随着云计算的普及,计算的能力得到极大发展,计算的成本越来越低,技术开始走向成熟,大数据真正驱动保险业变革的最后一公里,就是实战了。


但实战又是最难落地的一环。首先从人才的角度上,对数据科学家的认知还很有限,也缺乏真正在技术和业务两个层面融合的够好的大数据专家。周雄志说,“通常,数据科学家有的定义是专门做这种算法的,这是一种大家可能公认比较多的数据科学家。在我看来,我对数据科学家的要求会更严一些。因为你光懂算法是没用的,算法一定要作用在一个业务场景当中,能解决业务上的具体问题。如果不能解决业务问题,那这种算法就是自娱自乐的。”


这是一个很简单的道理,古人说纸上谈兵,这也是目前大数据在应用中的困扰。经历实战的大数据应用,才称得上是有价值的大数据。其实,国内很多大数据的创业公司都忽略了这一点,像百分点这样从学院派出身走出来,又能立足于业务创新的公司并不多。


其次,每个行业里的公司,其实处于不同的信息化水平。如果脱离了实战的意义,盲目的部署大数据,也没有实际的价值。比如,很多保险公司连传统的信息管理工作都还没有完善,数据孤岛问题都还没有解决,这时候需要的并不是大数据,而是对信息基础建设的强化,再来谈大数据价值。


再有,很多保险公司还没有建设移动App,即使有了移动App的保险公司,其移动App的功能只是集中在保单的简单查询,并没有将移动App定位为客户入口和主要渠道。还有一些保险公司内部数据都没有完成整合,数据还处于信息孤岛状态,对这些公司而言,大数据的应用是缺少实际基础的。


所以,总结来看,保险业有天生的大数据应用场景,保险业的未来业务布局应用将有大数据重要的位置。但是,大数据是需要实践和实战的信息化投入,不仅保险业要从自身认可数据价值,更需要真正理解行业实践的大数据公司,来一起设计一个数据化的保险业未来。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
581
分享
相关文章
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
中国联通网络资源湖仓一体应用实践
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
370 2
ClickHouse与大数据生态集成:Spark & Flink 实战
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
vivo基于Paimon的湖仓一体落地实践
本文整理自vivo互联网大数据专家徐昱在Flink Forward Asia 2024的分享,基于实际案例探讨了构建现代化数据湖仓的关键决策和技术实践。内容涵盖组件选型、架构设计、离线加速、流批链路统一、消息组件替代、样本拼接、查询提速、元数据监控、数据迁移及未来展望等方面。通过这些探索,展示了如何优化性能、降低成本并提升数据处理效率,为相关领域提供了宝贵的经验和参考。
528 3
vivo基于Paimon的湖仓一体落地实践
StarRocks 在爱奇艺大数据场景的实践
本文介绍了爱奇艺大数据OLAP服务负责人林豪在StarRocks年度峰会上的分享,重点讲述了爱奇艺OLAP引擎的演进及引入StarRocks后的显著效果。在广告业务中,StarRocks替换Impala+Kudu后,接口性能提升400%,P90查询延迟缩短4.6倍;在“魔镜”数据分析平台中,StarRocks替代Spark达67%,P50查询速度提升33倍,P90提升15倍,节省4.6个人天。未来,爱奇艺计划进一步优化存算一体和存算分离架构,提升整体数据处理效率。
StarRocks 在爱奇艺大数据场景的实践
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
296 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
280 3
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
155 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等