整合全球新冠数据,华中大等开源联邦学习医学AI计算框架|Nature子刊

简介: 整合全球新冠数据,华中大等开源联邦学习医学AI计算框架|Nature子刊
12  月 15 日,Nature 子刊《自然 - 机器智能》发表了由华中科技大学人工智能学院发起、剑桥大学、斯坦福大学、约翰霍普金斯大学、MD  安德森肿瘤医院、华中科技大学同济医学院附属同济医院、附属协和医院、国家药物筛选中心等国内外权威科研机构联合开发的联邦学习开源医学人工智能(AI)计算框架(Unified  CT AI Diagnostic Initiative , UCADI)。

人工智能技术正在变革传统医疗。但当前人工智能模型普遍泛化性差:模型在训练过的数据集上表现优异,但是对于未曾见过的数据,表现差别大。这个根本性的缺陷导致  AI  技术在医学、医疗应用中表现出的局限性,甚至安全问题更加突出。由于医疗数据受到个人隐私,知识产权,数据尺寸等多方面的限制,无法实现大范围、集中式的数据融合,当前医学人工智能模型通常只能在有限,甚至单一的数据集上训练。因此在这样条件下构建的医疗  AI 模型应用范围十分有限。
为了解决这个根本性问题,华中科技大学人工智能学院夏天教授与白翔教授团队提出基于联邦学习(Federated learning)开源医学人工智能计算框架(UCADI),并发表在了《自然 - 机器智能》上

image.png

论文地址:https://www.nature.com/articles/s42256-021-00421-z

此架构在保证数据安全与隐私前提下,无需传输数据,能在不同物理地点共享训练医学数据,构建泛化性强的医学 AI 模型。

不仅如此,基于   UCADI,夏天教授与白翔教授联合华中科技大学同济医学院附属同济医院、附属协和医院、武汉天佑医院、武汉中心医院、武汉儿童医院、国家药物筛选中心与英国剑桥大学医学中心(维护全欧盟新冠影像数据,包括全英  23 家医院)发起国际大合作,实现真正全球分布式共享新冠影像数据 AI 模型训练与构建。

image.png

基于中英 23 家医院近万张的胸部 CT 扫描数据,研究团队验证了  UCADI 能够在保证用户数据隐私的情况下,多快好省地进行人工智能辅助诊断模型的训练和推理,实现跨国多中心的新冠病毒智能诊断。基于 UCADI  训练的 AI  新冠诊断模型相对于单个医院数据训练出的模型,不仅对新冠辅助诊断性能远超,同时在多个不同医院的验证数据集上表现出良好的泛化性与鲁棒性。

团队还进一步分析了模型的可解释性和不确定性,并验证了训练的 AI 模型能够捕捉到类似磨玻璃样阴影、小叶间隔增厚等新冠病人独有的 CT 特征。在此基础上,团队成员研究了数据异质性对模型性能的影响。

剑桥大学博士生、文章的共同一作王瀚宸发现“除了不同的医生、医院在  CT 的采集步骤上有所不同,国家与国家之间的差异更大。中英两国的 CT 数据有一个很大的区别是,中国的数据都是平扫,而英国的 CT  有很大一部分是注入造影剂后进行的增强扫描。此外,两国病人在年龄等属性上的分布也很不同,英国患者中的老年人比例非常高。这种数据上的异质性,对模型的训练是个很大的挑战。

image.png

为了应对这种数据异质性,团队首先进行了很多模型上的筛选和尝试,在几种常见的 3D 卷积网络架构中,最后选择 3D DenseNet。不仅是因为其较好的泛化性能,同时模型尺寸偏小,非常方便联邦学习中进行传输。但值得注意的是,3D  DenseNet 也需要更多的计算资源。在此基础上,团队还尝试用 CycleGAN 在增强和平扫的 CT  间进行转换,取得了一些性能上的改善,但还是有相当的可提升空间。

image.png

此工作中,UCADI  框架初步展示了对于全球新冠数据的整合能力,基于全球范围数据构建的新冠诊断预测模型完全向全球开放使用,各国医疗机构可以在此基础上,利用  UCADI 进一步共享、更新、演进、优化预测模型。同时,UCADI  框架完全开源,可用于其他类型医疗数据,为未来的跨国智能诊断系统的研究与发展提供了基础设施。

团队已与剑桥大学和世界卫生组织  10 月份在德国新设立的疫情智能防控中心 (WHO Hub for Pandemic and Epidemic Intelligence)  建立进一步合作,重点研究现有的 AI 诊疗模型对识别新变种 Omicron 的鲁棒性,以及探索用持续学习 (Continual  Learning) 等方法来开发一个可不断进化的联邦学习诊疗框架。

相关文章
|
20天前
|
人工智能 算法 开发者
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
140 10
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
|
29天前
|
云安全 机器学习/深度学习 人工智能
阿里云安全Black Hat技术开源大揭秘,AI安全检测的工程化实践
阿里云安全 LLMDYara框架开源核心思路,赋能云安全产品!
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
151 6
|
2月前
|
人工智能 自然语言处理 安全
ChatBI,用AI自然语言与数据对话
在数字经济快速发展的2025年,企业数据量激增,市场对快速决策和深度分析提出更高要求。本方案介绍如何通过阿里云Quick BI工具,结合AI能力,帮助商业分析师高效应对数据洪流,实现智能化分析、快速决策,提升业务洞察力与决策效率。
ChatBI,用AI自然语言与数据对话
|
1月前
|
人工智能 语音技术 Docker
揭秘8.3k star 开源神器 VoiceCraft 用AI革新有声内容创作,只需几秒录音
VoiceCraft 是一款开源语音编辑与文本转语音(TTS)工具,仅需几秒录音即可实现语音克隆、插入、删除、替换等操作,支持零样本编辑和高自然度语音生成。适用于播客、短视频、有声书等内容创作场景,具备本地部署能力,已在 GitHub 获得 8.3k 星标。
157 0
|
2月前
|
人工智能 自然语言处理 供应链
走进麦当劳·会数据同学:解锁AI在企业应用的深度价值
麦当劳中国进入“金拱门时代”,加速数字化转型,计划未来4年投入40亿元用于研发创新。携手阿里云与瓴羊,构建以客户为中心的数字系统,优化消费体验与门店运营,打造全球数字化标杆。
|
2月前
|
人工智能 JavaScript 前端开发
分享开源库:AI驱动的JavaScript反编译,针对混淆和压缩的代码
这是一个智能JavaScript反混淆与代码分析工具,通过AST转换和AI深度分析,自动还原变量名、识别依赖库、生成可视化控制流图,并支持多格式导出,提升代码理解与审计效率。访问 [jsunpack.tech](https://www.jsunpack.tech/) 即可在线体验。
317 0
|
2月前
|
人工智能 自然语言处理 算法
AI与API结合:自动解析商品描述+情感分析评论数据
AI与API深度融合正在重塑电商运营模式。通过自动解析商品描述、分析评论情感,企业可实现信息标准化、用户画像精准化及运营决策自动化。本文从技术架构、核心算法、实战案例三方面,详解AI如何驱动电商智能化升级。
|
27天前
|
人工智能 前端开发 Java
构建能源领域的AI专家:一个多智能体框架的实践与思考
本文介绍了作者团队在能源领域构建多智能体(Multi-Agent)框架的实践经验。面对单智能体处理复杂任务时因“注意力发散”导致的效率低下问题,团队设计了一套集“规划-调度-执行-汇总”于一体的多智能体协作系统。
293 19

热门文章

最新文章