理解物体之间潜在关系,MIT新研究让AI像人一样「看」世界

简介: 理解物体之间潜在关系,MIT新研究让AI像人一样「看」世界
人工智能必须理 解物体之间的潜在关系才能更好地与世界交互。

人们观察场景通常是观察场景中的物体和物体之间的关系。比如我们经常这样描述一个场景:桌面上有一台笔记本电脑,笔记本电脑的右边是一个手机。

但这种观察方式对深度学习模型来说很难实现,因为这些模型不了解每个对象之间的关系。如果不了解这些关系,功能型机器人就很难完成它们的任务,例如一个厨房机器人将很难执行这样的命令:「拿起炒锅左侧的水果刀并将其放在砧板上」。

为了解决这个问题,在一篇 NeurIPS 2021 Spotlight 论文中,来自 MIT 的研究者开发了一种可以理解场景中对象之间潜在关系的模型。该模型一次表征一种个体关系,然后结合这些表征来描述整个场景,使得模型能够从文本描述中生成更准确的图像。

论文地址:https://arxiv.org/abs/2111.09297

现实生活中人们并不是靠坐标定位物体,而是依赖于物体之间的相对位置关系。这项研究的成果将应用于工业机器人必须执行复杂的多步骤操作任务的情况,例如在仓库中堆叠物品、组装电器。此外,该研究还有助于让机器能够像人类一样从环境中学习并与之交互。

每次表征一个关系

该研究提出使用 Energy-Based 模型将个体关系表征和分解为非规一化密度。关系场景描述被表征为关系中的独立概率分布,每个个体关系指定一个单独的图像上的概率分布。这样的组合方法可以建模多个关系之间的交互。

image.png

该研究表明所提框架能够可靠地捕获和生成带有多个组合关系的图像,并且能够推断潜在的关系场景描述,并且能够稳健地理解语义上等效的关系场景描述。

在泛化方面,该方法可以推广到以前未见过的关系描述上,包括对象和描述来自训练期间未见过的数据集。这种泛化对于通用人工智能系统适应周围世界的无限变化至关重要。

以往的一些系统可能会从整体上获取所有关系,并从描述中一次性生成图像。然而这些模型不能真正适应添加更多关系的图像。相比之下,该研究的方法将单独的、较小的模型组合在一起,能够对更多的关系进行建模并适应新的关系组合。

此外,该系统还可以反向工作——给定一张图像,它可以找到与场景中对象之间的关系相匹配的文本描述。该模型还可通过重新排列场景中的对象来编辑图像,使它们与新的描述相匹配。

image.png

研究人员将他们的模型与几种类似深度学习方法进行了比较,实验表明在每种情况下,他们的模型都优于基线。

image.png

他们还邀请人们评估生成的图像是否与原始场景描述匹配。在描述包含三个关系的示例中,91% 的参与者认为该模型的性能比以往模型更好。

这些早期结果令人鼓舞,研究人员希望未来该模型能够在更复杂的真实世界图像上运行,这需要解决物体遮挡、场景混乱等问题。

他们也期待模型最终能够整合到机器人系统中,使机器人能够推断现实世界中的物体关系,更好地完成交互任务。

相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
50 25
|
14天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
57 12
|
29天前
|
人工智能 开发者
人类自身都对不齐,怎么对齐AI?新研究全面审视偏好在AI对齐中的作用
论文《AI对齐中的超越偏好》挑战了偏好主义AI对齐方法,指出偏好无法全面代表人类价值观,存在冲突和变化,并受社会影响。文章提出基于角色的对齐方案,强调AI应与其社会角色相关的规范标准一致,而非仅关注个人偏好,旨在实现更稳定、适用性更广且更符合社会利益的AI对齐。论文链接:https://arxiv.org/pdf/2408.16984
36 2
|
1月前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
46 12
|
1月前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
67 10
|
3天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
10天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。