中科院自动化所联合北方电子设备研究所提出多输入文本人脸合成方法,数据代码已开源

简介: 中科院自动化所联合北方电子设备研究所提出多输入文本人脸合成方法,数据代码已开源

文本人脸合成指的是基于一个或多个文本描述,生成真实自然的人脸图像,并尽可能保证生成的图像符合对应文本描述,可以用于人机交互,艺术图像生成,以及根据受害者描述生成犯罪嫌疑人画像等。针对这个问题,中科院自动化所联合北方电子设备研究所提出了一种基于多输入的文本人脸合成方法(SEA-T2F),并建立了第一个手工标注的大规模人脸文本描述数据集(CelebAText-HQ)。该方法首次实现多个文本输入的人脸合成,与单输入的算法相比生成的图像更加接近真实人脸。相关成果论文《Multi-caption Text-to-Face Synthesis: Dataset and Algorithm》已被ACM MM 2021录用。

 

image.png

image.png 相较于文本到自然图像的生成,文本到人脸生成是一个更具挑战性的任务,一方面,人脸具有更加细密的纹理和模糊的特征,难以建立人脸图像与自然语言的映射,另一方面,相关数据集要么是规模太小,要么直接基于属性标签用网络生成,目前为止,还没有大规模手工标注的人脸文本描述数据集,极大地限制了该领域的发展。此外,目前基于文本的人脸生成方法[1,2,3,4]都是基于一个文本输入,但一个文本不足以描述复杂的人脸特征,更重要的是,由于文本描述的主观性,不同人对于同一张图片的描述可能会相互冲突,因此基于多个文本描述的人脸生成具有很重大的研究意义。
针对该问题,团队提出了一个基于多输入的文本人脸生成算法。算法采用三阶段的生成对抗网络框架,以随机采样的高斯噪声作为输入,来自不同文本的句子特征通过SFIM模块嵌入到网络当中,在网络的第二第三阶段分别引入了AMC模块,将不同文本描述的单词特征与中间图像特征通过注意力机制进行融合,以生成更加细密度的特征。为了更好地在文本中学习属性信息,团队设计了一个属性分类器,并引入属性分类损失来优化网络参数。


image.png

image.png此外,团队首次建立了一个大规模手工标注数据集,首先在CelebAMask-HQ数据集中筛选了15010张图片,每个图片分别由十个工作人员手工标注十个文本描述,十个描述按照由粗到细的顺序分别描述人脸的不同部位。 实验结果 团队对提出的方法进行了定性和定量分析[5,6],实验结果表明,该方法不仅能生成高质量的图像,并且更加符合文本描述。 

image.png

image.png

image.png


image.png

image.png

参考文献:
1.      Osaid Rehman Nasir, Shailesh Kumar Jha, Manraj Singh Grover, Yi Yu,  Ajit Kumar, and Rajiv Ratn Shah. 2019. Text2FaceGAN: face generation  from fine grained textual descriptions. In IEEE International Conference  on Multimedia Big Data (BigMM). 58–67.2.      Xiang Chen, Lingbo Qing, Xiaohai He, Xiaodong Luo, and Yining Xu. 2019.  FTGAN: A fully-trained generative adversarial networks for text to face  generation. arXiv preprint arXiv:1904.05729 (2019).3.      David Stap, Maurits Bleeker, Sarah Ibrahimi, and Maartje ter Hoeve.  2020. Conditional image generation and manipulation for user-specified  content. arXiv preprint arXiv:2005.04909 (2020).4.      Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu. 2021. TediGAN:  Textguided diverse image generation and manipulation. In Proceedings of  the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).  2256–2265.5.      Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei  Huang, and Xiaodong He. 2018. Attngan: Fine-grained text to image  generation with attentional generative adversarial networks. In  Proceedings of the IEEE Conference on Computer Vision and Pattern  Recognition (CVPR). 1316–1324.6.      Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip Torr. 2019.  Controllable text-to-image generation. In Advances in Neural Information  Processing Systems (NeuIPS). 2065–2075.

相关文章
|
15天前
|
数据采集 数据可视化 JavaScript
用 通义灵码和 PyQt5 爬虫智能体轻松爬取掘金,自动化采集技术文章和数据
本文介绍了如何利用智能开发工具通义灵码和Python的PyQt5框架,构建一个自动化爬取掘金网站技术文章和数据的智能爬虫系统。通过通义灵码提高代码编写效率,使用PyQt5创建可视化界面,实现对爬虫任务的动态控制与管理。同时,还讲解了应对反爬机制、动态内容加载及数据清洗等关键技术点,帮助开发者高效获取并处理网络信息。
|
12天前
|
数据采集 人工智能 API
推荐一款Python开源的AI自动化工具:Browser Use
Browser Use 是一款基于 Python 的开源 AI 自动化工具,融合大型语言模型与浏览器自动化技术,支持网页导航、数据抓取、智能决策等操作,适用于测试、爬虫、信息提取等多种场景。
184 2
推荐一款Python开源的AI自动化工具:Browser Use
|
28天前
|
人工智能 缓存 搜索推荐
手把手基于ModelScope MCP协议实现AI短视频创作:零代码自动化工作流
本文介绍了基于ModelScope MCP协议的AI视频生成解决方案,涵盖核心机制解析、零代码工作流搭建、性能优化策略及全链路异常处理。通过统一上下文描述符抽象异构AI服务,实现图像生成、语音合成与视频剪辑的自动化编排。结合缓存优化与错误重试机制,大幅提升生成效率(如5分镜视频从91.7s降至22.4s)。最后展示《夏日海滩》生成案例,并探讨个性化风格迁移与商业场景集成等进阶方向,揭示零代码本质为服务、流程与资源的三层抽象。
210 18
|
9天前
|
Web App开发 人工智能 数据可视化
猫头虎 推荐:国产开源AI工具 爱派(AiPy)|支持本地部署、自动化操作本地文件的AI办公神器
爱派(AiPy)是一款国产开源AI工具,支持本地部署与自动化操作,助力数据处理与办公效率提升。基于Python Use理念,AiPy让AI直接控制本地文件,简化繁琐任务,提供高效智能的解决方案,适用于数据工程师、分析师及日常办公用户。
123 0
|
3月前
|
数据采集 JSON 前端开发
GraphQL接口采集:自动化发现和提取隐藏数据字段
本文围绕GraphQL接口采集展开,详解如何通过`requests`+`Session`自动化提取隐藏数据字段,结合爬虫代理、Cookie与User-Agent设置实现精准抓取。内容涵盖错误示例(传统HTML解析弊端)、正确姿势(GraphQL请求构造)、原因解释(效率优势)、陷阱提示(反爬机制)及模板推荐(可复用代码)。掌握全文技巧,助你高效采集Yelp商家信息,避免常见误区,快速上手中高级爬虫开发。
GraphQL接口采集:自动化发现和提取隐藏数据字段
|
3月前
|
人工智能 API 开发工具
GitHub官方开源MCP服务!GitHub MCP Server:无缝集成GitHub API,实现Git流程完全自动化
GitHub MCP Server是基于Model Context Protocol的服务器工具,提供与GitHub API的无缝集成,支持自动化处理问题、Pull Request和仓库管理等功能。
782 2
GitHub官方开源MCP服务!GitHub MCP Server:无缝集成GitHub API,实现Git流程完全自动化
|
3月前
|
存储 jenkins 测试技术
Apipost自动化测试:零代码!3步搞定!
传统手动测试耗时低效且易遗漏,全球Top 10科技公司中90%已转向自动化测试。Apipost无需代码,三步实现全流程自动化测试,支持小白快速上手。功能涵盖接口测试、性能压测与数据驱动,并提供动态数据提取、CICD集成等优势,助力高效测试全场景覆盖。通过拖拽编排、一键CLI生成,无缝对接Jenkins、GitHub Actions,提升测试效率与准确性。
135 11
|
4月前
|
存储 人工智能 API
OWL:告别繁琐任务!开源多智能体系统实现自动化协作,效率提升10倍
OWL 是基于 CAMEL-AI 框架开发的多智能体协作系统,通过智能体之间的动态交互实现高效的任务自动化,支持角色分配、任务分解和记忆功能,适用于代码生成、文档撰写、数据分析等多种场景。
1157 13
OWL:告别繁琐任务!开源多智能体系统实现自动化协作,效率提升10倍
|
4月前
|
人工智能 自然语言处理 API
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
Proxy Lite 是一款开源的轻量级视觉语言模型,支持自动化网页任务,能够像人类一样操作浏览器,完成网页交互、数据抓取、表单填写等重复性工作,显著降低自动化成本。
389 11
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
|
4月前
|
缓存 监控 API
微店商品详情API接口实战指南:从零实现商品数据自动化获取
本文介绍了微店商品详情API接口的应用,涵盖申请与鉴权、签名加密、数据解析等内容。通过Python实战演示了5步获取商品数据的流程,并提供了多平台同步、价格监控等典型应用场景。开发者可利用此接口实现自动化操作,提升电商运营效率,降低人工成本。文中还总结了频率限制、数据缓存等避坑指南,助力开发者高效使用API。

热门文章

最新文章