算法分析

简介: 算法分析

算法是为求解一个问题需要遵循的、被清楚的指定的简单指令集合。


估计算法资源消耗所需的分析一般来说是一个理论问题,因此需要一套正式的系统架构。


定义:如果存在正常数c和使得当N时,T(N)cf(N),则记为T(N)=O(f(N))。

定义:如果存在正常数c和使得当N时,T(N)cg(N),则记为T(N)=(g(N))。

定义:T(N)=(h(N)),当且仅当T(N)=O(h(N))且T(N)=(h(N)).

定义:如果T(N)=O(h(N)),当且仅当T(N)(h(N)),则T(N)=o(p(N)).


例如,增长率比快,则可以说=O(),或者=().


法则1:


如果image.pngimage.png那么image.png

(a),image.png

(b)image.png


法则2:

如果T(N)是一个k次多项式,则image.png


法则3:

对任意常数k,image.png


首先将常数或低阶项放进大O是非常坏的习惯。


一、运行时间计算


法则1-for循环


一次for循环的运行时间至多该for循环内语句(包括测试)的运行时间迭代的次数



法则2-嵌套for循环


从里向外分析这些for循环。在一组嵌套for循环内部的一条语句,总的运行时间为该语句的运行时间乘以该组所有的for循环的大小乘积。



法则3-顺序语句


将各个语句的运行时间求和即可



法则4-IF/ELSE


一个if/else语句的运行时间从不超过判断再加上S1和S2中运行时间长者的总运行时间。


目录
相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
67 4
|
4月前
|
人工智能 算法 BI
第一周算法设计与分析 D : 两面包夹芝士
这篇文章介绍了解决算法问题"两面包夹芝士"的方法,通过找出两个数组中的最大最小值,计算这两个值之间的整数个数,包括特判不存在整数的情况。
|
13天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
37 1
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
63 4
|
3月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
53 1
|
2月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
169 19
|
4月前
|
算法
算法设计与分析作业
这篇文章是关于算法设计与分析的作业,其中包含了两个算法实现:一个是使用分治算法实现的十进制大整数相乘(包括加法、减法和乘法函数),并进行了正确性和健壮性测试;另一个是使用快速排序思想实现的分治查找第K小元素的程序,并分析了其平均和最坏时间复杂度。
算法设计与分析作业