双重检查锁,原来是这样演变来的,你了解吗

简介: 双重检查锁,原来是这样演变来的,你了解吗

在看Nacos的源代码时,发现多处都使用了“双重检查锁”的机制,算是非常好的实践案例。这篇文章就着案例来分析一下双重检查锁的使用以及优势所在,目的就是让你的代码格调更加高一个层次。


同时,基于单例模式,讲解一下双重检查锁的演变过程。


Nacos中的双重检查锁

在Nacos的InstancesChangeNotifier类中,有这样一个方法:


private final Map<String, ConcurrentHashSet<EventListener>> listenerMap = new ConcurrentHashMap<String, ConcurrentHashSet<EventListener>>();
private final Object lock = new Object();
public void registerListener(String groupName, String serviceName, String clusters, EventListener listener) {
    String key = ServiceInfo.getKey(NamingUtils.getGroupedName(serviceName, groupName), clusters);
    ConcurrentHashSet<EventListener> eventListeners = listenerMap.get(key);
    if (eventListeners == null) {
        synchronized (lock) {
            eventListeners = listenerMap.get(key);
            if (eventListeners == null) {
                eventListeners = new ConcurrentHashSet<EventListener>();
                listenerMap.put(key, eventListeners);
            }
        }
    }
    eventListeners.add(listener);
}

该方法的主要功能就是对监听器事件进行注册。其中注册的事件都存在成员变量listenerMap当中。listenerMap的数据结构是key为String,value为ConcurrentHashSet的Map。也就是说,一个key对应一个集合。


针对这种数据结构,在多线程的情况下,Nacos处理流程如下:


通过key获取value值;

判断value是否为null;

如果value值不为null,则直接将值添加到Set当中;

如果为null,就需要创建一个ConcurrentHashSet,在多线程时,有可能会创建多个,因此要使用锁。

通过synchronized锁定一个Object对象;

在锁内再获取一次value值,如果依然是null,则进行创建。

进行后续操作。

上述过程,在锁定前和锁定之后,做了两次判断,因此称作”双重检查锁“。使用锁的目的就是避免创建多个ConcurrentHashSet。


Nacos中的实例稍微复杂一下,下面以单例模式中的双重检查锁的演变过程。


未加锁的单例

这里直接演示单例模式的懒汉模式实现:


public class Singleton {
    private static Singleton instance;
    private Singleton() {
    }
    public Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }    
}

这是一个最简单的单例模式,在单线程下运转良好。但在多线程下会出现明显的问题,可能会创建多个实例。

以两个线程为例:image.png可以看到,当两个线程同时执行时,是有可能会创建多个实例的,这很明显不符合单例的要求。

加锁单例

针对上述代码的问题,很直观的想到是进行加锁处理,实现代码如下:

public class Singleton {
    private static Singleton instance;
    private Singleton() {
    }
    public synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

与第一个示例唯一的区别是在方法上添加了synchronized关键字。这时,当多个线程进入该方法时,需要先获得锁才能进行执行。image.png通过在方法上添加synchronized关键字,看似完美的解决了多线程的问题,但却带了性能问题。


我们知道使用锁会导致额外的性能开销,对于上面的单例模式,只有第一次创建时需要锁(防止创建多个实例),但查询时是不需要锁的。


如果针对方法进行加锁,每次查询也要承担加锁的性能损耗。


双重检查锁

针对上面的问题,就有了双重检查锁,示例如下:


public class Singleton {
    private static Singleton instance;
    private Singleton() {
    }
    public Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

第一,将锁的范围缩小的方法内;


第二,锁之前先判断一下是不是null,如果不为null,说明已经实例化了,直接返回,没必要进行创建;


第三,如果为null,进行加锁,然后再次判断是否为null。为什么要再次判断?因为一个线程判断为null之后,另外一个线程可能已经创建了对象,所以在锁定之后,需要再次核实一下,真的为null,则进行对象创建。


改进之后,既保证了线程的安全性,又避免了锁导致的性能损失。问题到此结束了吗?并没有,继续往下看。


JVM的指令重排

在某些JVM当中,编译器为了性能问题,会进行指令重排。在上述代码中new Singleton()并不是原子操作,有可能会被编译器进行重排操作。


创建对象可抽象为三步:


memory = allocate();    //1:分配对象的内存空间

ctorInstance(memory);  //2:初始化对象

instance = memory;     //3:设置instance指向刚分配的内存地址

1

2

3

上面操作中,操作2依赖于操作1,但操作3并不依赖于操作2。因此,JVM是可以进行指令重排优化的,可能会出现如下的执行顺序:


memory = allocate();    //1:分配对象的内存空间

instance = memory;     //3:instance指向刚分配的内存地址,此时对象还未初始化

ctorInstance(memory);  //2:初始化对象

1

2

3

指令重排之后,将操作3的赋值操作放在了前面,那就会出现一个问题:当线程A执行完步骤赋值操作,但还未执行对象初始化。此时,线程B进来了,在第一层判断时发现Instance已经有值了(实际上还未初始化),直接返回对应的值。那么,程序在使用这个未初始化的值时,便会出现错误。


针对此问题,可在instance上添加volatile关键字,使得instance在读、写操作前后都会插入内存屏障,避免重排序。


最终,单例模式实现如下:


public class Singleton {
    private static volatile Singleton instance;
    private Singleton() {
    }
    public Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

至此,一个完善的单例模式实现了。此时,你是否有一个疑问,为什么Nacos中的双重检查锁没有使用volatile关键字呢?


答案很简单:上面单例模式如果出现指令重排,会导致单例实例被使用。那么,再看Nacos的代码,由于创建ConcurrentHashSet并不会影响到查询,而真正影响查询的是listenerMap.put方法,而ConcurrentHashSet本身是线程安全的。因此,也就不会出现线程安全问题,不用使用volatile关键字了。


小结

阅读源码最有意思的一个地方就是可以看到很多经典知识的实践,如果能够深入思考,拓展一下,会获得意想不到的收获。


再回顾一下本文的重点:


阅读Nacos源码,发现双重检查锁的使用;

未加锁单例模式使用,会创建多个对象;

方法上加锁,导致性能下降;

代码内局部加锁,双重判断,既满足线程安全,又满足性能需求;

单例模式特例:创建对象分多步,会出现指令重排现象,采用volatile进行避免指令重排;



目录
相关文章
|
弹性计算 运维 监控
ecs实例性能监控
ecs实例性能监控
197 2
|
存储 容器
Collectors.groupingBy分组后乱序问题
Collectors.groupingBy分组后乱序问题
|
9月前
|
存储 缓存 监控
ClickHouse 架构原理及核心特性详解
ClickHouse 是由 Yandex 开发的开源列式数据库,专为 OLAP 场景设计,支持高效的大数据分析。其核心特性包括列式存储、字段压缩、丰富的数据类型、向量化执行和分布式查询。ClickHouse 通过多种表引擎(如 MergeTree、ReplacingMergeTree、SummingMergeTree)优化了数据写入和查询性能,适用于电商数据分析、日志分析等场景。然而,它在事务处理、单条数据更新删除及内存占用方面存在不足。
2672 21
|
监控 Java Linux
redisson内存泄漏问题排查
【9月更文挑战第22天】在排查 Redisson 内存泄漏问题时,首先需确认内存泄漏的存在,使用专业工具(如 JProfiler)分析内存使用情况,检查对象实例数量及引用关系。其次,检查 Redisson 使用方式,确保正确释放资源、避免长时间持有引用、检查订阅和监听器。此外,还需检查应用程序其他部分是否存在内存泄漏源或循环引用等问题,并考虑更新 Redisson 到最新版本以修复潜在问题。
418 5
|
前端开发 Java Spring
关于spring mvc 的 addPathPatterns 拦截配置常见问题
关于spring mvc 的 addPathPatterns 拦截配置常见问题
559 2
|
存储 数据库
【随手记】顺序I/O和随机I/O的定义和区别
【随手记】顺序I/O和随机I/O的定义和区别
504 1
|
Linux Shell 调度
一探Linux下的七大进程状态-1
一探Linux下的七大进程状态
259 0
|
存储 Java Spring
Spring Boot中的配置中心实现
Spring Boot中的配置中心实现
|
XML 数据格式
yaml基本语法和yaml数据格式,ymal对象写法,数组写法
yaml基本语法和yaml数据格式,ymal对象写法,数组写法
|
存储 Java
Java中的布尔型数据(Boolean)
Java中的布尔型数据(Boolean)
1282 0