基于SpringBoot实现让日志像诗一样有韵律(日志追踪)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 基于SpringBoot实现让日志像诗一样有韵律(日志追踪)

前言

在传统系统中,如果能够提供日志输出,基本上已经能够满足需求的。但一旦将系统拆分成两套及以上的系统,再加上负载均衡等,调用链路就变得复杂起来。


特别是进一步向微服务方向演化,如果没有日志的合理规划、链路追踪,那么排查日志将变得异常困难。


比如系统A、B、C,调用链路为A -> B -> C,如果每套服务都是双活,则调用路径有2的三次方种可能性。如果系统更多,服务更多,调用链路则会成指数增长。


因此,无论是几个简单的内部服务调用,还是复杂的微服务系统,都需要通过一个机制来实现日志的链路追踪。让你系统的日志输出,像诗一样有形式美,又有和谐的韵律。


日志追踪其实已经有很多现成的框架了,比如Sleuth、Zipkin等组件。但这不是我们要讲的重点,本文重点基于Spring Boot、LogBack来手写实现一个简单的日志调用链路追踪功能。基于此实现模式,大家可以更细粒度的去实现。


Spring Boot中集成Logback

Spring Boot本身就内置了日志功能,这里使用logback日志框架,并对输出结果进行格式化。先来看一下SpringBoot对Logback的内置集成,依赖关系如下。当项目中引入了:


<dependency>

   <groupId>org.springframework.boot</groupId>

   <artifactId>spring-boot-starter-web</artifactId>

</dependency>


spring-boot-starter-web中间接引入了:


<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter</artifactId>

</dependency>


spring-boot-starter又引入了logging的starter:


<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-logging</artifactId>

</dependency>


在logging中真正引入了所需的logback包:


<dependency>
  <groupId>ch.qos.logback</groupId>
  <artifactId>logback-classic</artifactId>
</dependency>
<dependency>
  <groupId>org.apache.logging.log4j</groupId>
  <artifactId>log4j-to-slf4j</artifactId>
</dependency>
<dependency>
  <groupId>org.slf4j</groupId>
  <artifactId>jul-to-slf4j</artifactId>
</dependency>

因此,我们使用时,只需将logback-spring.xml配置文件放在resources目录下即可。理论上配置文件命名为logback.xml也是支持的,但Spring Boot官网推荐使用的名称为:logback-spring.xml。


然后,在logback-spring.xml中进行日志输出的配置即可。这里不贴全部代码了,只贴出来相关日志输出格式部分,以控制台输出为例:


<property name="CONSOLE_LOG_PATTERN" value="%d{yyyy-MM-dd HH:mm:ss.SSS} %contextName [%thread] %-5level [%X{requestId}] %logger{36} - %msg%n"/>

1

在value属性的表达式中,我们新增了自定义的变量值requestId,通过“[%X{requestId}]”的形式来展示。


这个requestId便是我们用来追踪日志的唯一标识。如果一个请求,从头到尾都使用了同一个requestId便可以把整个请求链路串联起来。如果系统还基于EKL等日志搜集工具进行统一收集,就可以更方便的查看整个日志的调用链路了。


那么,这个requestId变量是如何来的,又存储在何处呢?要了解这个,我们要先来了解一下日志框架提供的MDC功能。


什么是MDC?

MDC(Mapped Diagnostic Contexts) 是一个线程安全的存放诊断日志的容器。MDC是slf4j提供的适配其他具体日志实现包的工具类,目前只有logback和log4j支持此功能。


MDC是线程独立、线程安全的,通常无论是HTTP还是RPC请求,都是在各自独立的线程中完成的,这与MDC的机制可以很好地契合。


在使用MDC功能时,我们主要使用是put方法,该方法间接的调用了MDCAdapter接口的put方法。


看一下接口MDCAdapter其中一个实现类BasicMDCAdapter中的代码来:


public class BasicMDCAdapter implements MDCAdapter {
    private InheritableThreadLocal<Map<String, String>> inheritableThreadLocal = new InheritableThreadLocal<Map<String, String>>() {
        @Override
        protected Map<String, String> childValue(Map<String, String> parentValue) {
            if (parentValue == null) {
                return null;
            }
            return new HashMap<String, String>(parentValue);
        }
    };
    public void put(String key, String val) {
        if (key == null) {
            throw new IllegalArgumentException("key cannot be null");
        }
        Map<String, String> map = inheritableThreadLocal.get();
        if (map == null) {
            map = new HashMap<String, String>();
            inheritableThreadLocal.set(map);
        }
        map.put(key, val);
    }
    // ...
}

通过源码可以看出内部持有一个InheritableThreadLocal的实例,该实例中通过HashMap来保存context数据。


此外,MDC提供了put/get/clear等几个核心接口,用于操作ThreadLocal中存储的数据。而在logback.xml中,可在layout中通过声明“%X{requestId}”这种形式来获得MDC中存储的数据,并进行打印此信息。


基于MDC的这些特性,因此它经常被用来做日志链路跟踪、动态配置用户自定义信息(比如requestId、sessionId等)等场景。


实战使用

上面了解了一些基础的原理知识,下面我们就来看看如何基于日志框架的MDC功能实现日志的追踪。


工具类准备

首先定义一些工具类,这个强烈建议大家将一些操作通过工具类的形式进行实现,这是写出优雅代码的一部分,也避免后期修改时每个地方都需要改。


TraceID(我们定义参数名为requestId)的生成类,这里采用UUID进行生成,当然可根据你的场景和需要,通过其他方式进行生成。


public class TraceIdUtils {
    /**
     * 生成traceId
     *
     * @return TraceId 基于UUID
     */
    public static String getTraceId() {
        return UUID.randomUUID().toString().replace("-", "");
    }
}

对Context内容的操作工具类TraceIdContext:


public class TraceIdContext {
    public static final String TRACE_ID_KEY = "requestId";
    public static void setTraceId(String traceId) {
        if (StringLocalUtil.isNotEmpty(traceId)) {
            MDC.put(TRACE_ID_KEY, traceId);
        }
    }
    public static String getTraceId() {
        String traceId = MDC.get(TRACE_ID_KEY);
        return traceId == null ? "" : traceId;
    }
    public static void removeTraceId() {
        MDC.remove(TRACE_ID_KEY);
    }
    public static void clearTraceId() {
        MDC.clear();
    }
}

通过工具类,方便所有服务统一使用,比如requestId可以统一定义,避免每处都不一样。这里不仅提供了set方法,还提供了移除和清理的方法。


需要注意的是,MDC.clear()方法的使用。如果所有的线程都是通过new Thread方法建立的,线程消亡之后,存储的数据也随之消亡,这倒没什么。但如果采用的是线程池的情况时,线程是可以被重复利用的,如果之前线程的MDC内容没有清除掉,再次从线程池中获取这个线程,会取出之前的数据(脏数据),会导致一些不可预期的错误,所以当前线程结束后一定要清掉。


Filter拦截

既然我们要实现日志链路的追踪,最直观的思路就是在访问的源头生成一个请求ID,然后一路传下去,直到这个请求完成。这里以Http为例,通过Filter来拦截请求,并将数据通过Http的Header来存储和传递数据。涉及到系统之间调用时,调用方设置requestId到Header中,被调用方从Header中取即可。


Filter的定义:


public class TraceIdRequestLoggingFilter extends AbstractRequestLoggingFilter {
    @Override
    protected void beforeRequest(HttpServletRequest request, String message) {
        String requestId = request.getHeader(TraceIdContext.TRACE_ID_KEY);
        if (StringLocalUtil.isNotEmpty(requestId)) {
            TraceIdContext.setTraceId(requestId);
        } else {
            TraceIdContext.setTraceId(TraceIdUtils.getTraceId());
        }
    }
    @Override
    protected void afterRequest(HttpServletRequest request, String message) {
        TraceIdContext.removeTraceId();
    }
}

在beforeRequest方法中,从Header中获取requestId,如果获取不到则视为“源头”,生成一个requestId,设置到MDC当中。当这个请求完成时,将设置的requestId移除,防止上面说到的线程池问题。系统中每个服务都可以通过上述方式实现,整个请求链路就串起来了。


当然,上面定义的Filter是需要进行初始化的,在Spring Boot中实例化方法如下:


@Configuration
public class TraceIdConfig {
    @Bean
    public TraceIdRequestLoggingFilter traceIdRequestLoggingFilter() {
        return new TraceIdRequestLoggingFilter();
    }
}

针对普通的系统调用,上述方式基本上已经能满足了,实践中可根据自己的需要在此基础上进行扩展。这里使用的是Filter,也可以通过拦截器、Spring的AOP等方式进行实现。


微服务中的Feign

如果你的系统是基于Spring Cloud中的Feign组件进行调用,则可通过实现RequestInterceptor拦截器来达到添加requestId效果。具体实现如下:


@Configuration
public class FeignConfig implements RequestInterceptor {
    @Override
    public void apply(RequestTemplate requestTemplate) {
        requestTemplate.header(TraceIdContext.TRACE_ID_KEY, TraceIdContext.getTraceId());
    }
}

结果验证

当完成上述操作之后,对一个Controller进行请求,会打印如下的日志:


2021-04-13 10:58:31.092 cloud-sevice-consumer-demo [http-nio-7199-exec-1] INFO  [ef76526ca96242bc8e646cdef3ab31e6] c.b.demo.controller.CityController - getCity

2021-04-13 10:58:31.185 cloud-sevice-consumer-demo [http-nio-7199-exec-1] WARN  [ef76526ca96242bc8e646cdef3ab31e6] o.s.c.o.l.FeignBlockingLoadBalancerClient -

1

2

可以看到requestID已经被成功添加。当我们排查日志时,只需找到请求的关键信息,然后根据关键信息日志中的requestId值就可以把整个日志串联起来。


小结

最后,我们来回顾一下日志追踪的整个过程:当请求到达第一个服务器,服务检查requestId是否存在,如果不存在,则创建一个,放入MDC当中;服务调用其他服务时,再通过Header将requestId进行传递;而每个服务的logback配置requestId的输出。从而达到从头到尾将日志串联的效果。


在学习本文,如果你只学到了日志追踪,那是一种损失,因为文中还涉及到了SpringBoot对logback的集成、MDC的底层实现及坑、过滤器的使用、Feign的请求拦截器等。如果感兴趣,每个都可以发散一下,学习到更多的知识点。


相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
21天前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
223 4
|
7月前
|
存储 Java 文件存储
微服务——SpringBoot使用归纳——Spring Boot使用slf4j进行日志记录—— logback.xml 配置文件解析
本文解析了 `logback.xml` 配置文件的详细内容,包括日志输出格式、存储路径、控制台输出及日志级别等关键配置。通过定义 `LOG_PATTERN` 和 `FILE_PATH`,设置日志格式与存储路径;利用 `&lt;appender&gt;` 节点配置控制台和文件输出,支持日志滚动策略(如文件大小限制和保存时长);最后通过 `&lt;logger&gt;` 和 `&lt;root&gt;` 定义日志级别与输出方式。此配置适用于精细化管理日志输出,满足不同场景需求。
1656 1
|
3月前
|
机器学习/深度学习 XML Java
【spring boot logback】日志logback格式解析
在 Spring Boot 中,Logback 是默认的日志框架,它支持灵活的日志格式配置。通过配置 logback.xml 文件,可以定义日志的输出格式、日志级别、日志文件路径等。
510 5
|
7月前
|
Java 微服务 Spring
微服务——SpringBoot使用归纳——Spring Boot使用slf4j进行日志记录——使用Logger在项目中打印日志
本文介绍了如何在项目中使用Logger打印日志。通过SLF4J和Logback,可设置不同日志级别(如DEBUG、INFO、WARN、ERROR)并支持占位符输出动态信息。示例代码展示了日志在控制器中的应用,说明了日志配置对问题排查的重要性。附课程源码下载链接供实践参考。
780 0
|
7月前
|
SQL Java 数据库连接
微服务——SpringBoot使用归纳——Spring Boot使用slf4j进行日志记录—— application.yml 中对日志的配置
在 Spring Boot 项目中,`application.yml` 文件用于配置日志。通过 `logging.config` 指定日志配置文件(如 `logback.xml`),实现日志详细设置。`logging.level` 可定义包的日志输出级别,例如将 `com.itcodai.course03.dao` 包设为 `trace` 级别,便于开发时查看 SQL 操作。日志级别从高到低为 ERROR、WARN、INFO、DEBUG,生产环境建议调整为较高级别以减少日志量。本课程采用 yml 格式,因其层次清晰,但需注意格式要求。
640 0
|
5月前
|
JSON 监控 Java
日志与追踪的完美融合:OpenTelemetry MDC 实践指南
日志与追踪的完美融合:OpenTelemetry MDC 实践指南
307 24
|
5月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
630 54
|
11月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
2991 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
10月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
263 9