人工神经外网络中为什么ReLu要好过于Tanh和Sigmoid Function?

简介: 人工神经外网络中为什么ReLu要好过于Tanh和Sigmoid Function?

image.png

相关文章
|
8月前
|
机器学习/深度学习 数据处理
用人工神经网络对混凝土的强度进行建模
用人工神经网络对混凝土的强度进行建模
|
3月前
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
225 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
3月前
|
机器学习/深度学习 数据可视化 算法
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
WK
|
4月前
|
机器学习/深度学习 自然语言处理 算法
PSO算法和人工神经网络有什么不同
PSO算法(粒子群优化)与人工神经网络(ANN)在原理、应用及优化方式上差异显著。PSO模拟鸟群行为,通过粒子协作在解空间中搜索最优解;而ANN模仿大脑神经元结构,通过训练学习输入输出映射,适用于模式识别、图像处理等领域。PSO主要用于优化问题,实时性高,结果直观;ANN则在处理复杂非线性关系方面更强大,但结构复杂,训练耗时长,结果解释性较差。实际应用中需根据需求选择合适技术。
WK
39 0
WK
|
4月前
|
机器学习/深度学习
在神经网络的反向传播中,Tanh和Sigmoid哪个更快
在神经网络反向传播中,Tanh与Sigmoid函数的速度差异并无定论,受网络结构、数据特性及参数设置影响。Sigmoid在远离零时易导致梯度消失,而Tanh因输出范围为(-1, 1)且以0为中心,能更好地缓解此问题,理论上训练速度更快。两者计算复杂度相近,现代硬件优化使这一差距不明显。实际应用中,Sigmoid常用于二分类输出层,Tanh则适用于隐藏层以加速收敛并减少权重更新偏向。随着深度学习发展,ReLU等新激活函数因高效性和轻度梯度消失问题成为主流选择。综合来看,Tanh可能比Sigmoid稍快,但需根据具体任务和网络结构选择。
WK
95 0
|
6月前
|
机器学习/深度学习
现代深度学习框架构建问题之Sigmoid类实现Function接口如何解决
现代深度学习框架构建问题之Sigmoid类实现Function接口如何解决
37 4
|
6月前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
55 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
|
6月前
|
机器学习/深度学习 算法 数据可视化
Python基于librosa和人工神经网络实现语音识别分类模型(ANN算法)项目实战
Python基于librosa和人工神经网络实现语音识别分类模型(ANN算法)项目实战
|
8月前
|
机器学习/深度学习 传感器 芯片
LabVIEW利用人工神经网络辅助进行结冰检测
LabVIEW利用人工神经网络辅助进行结冰检测
49 0

热门文章

最新文章