mysql随机获取一条或者多条数据的方法与对比

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL随机获取一条或多条数据时,不同语句的对比实验

在日常开放中,经常会遇到从数据库中随机获取一条或多条数据的情况,从网上搜集整理了几条不同的写法,并对其整理了测试和实验,比较性能。

语句一:

1.1 语句:

SELECT * FROM usertest ORDER BY RAND() LIMIT 1;

这可能是我们最常用的随机记录的获取方式了。但是这种方式是不推荐的。
MYSQL手册里面针对RAND()的提示大概意思就是,在 ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描,导致效率相当相当的低,效率不行,切忌使用。

1.3 测试结果:

在1~2W数据量较小时,该方法还勉强凑活,但是数据量提升后,速度会越来越慢,所以不推荐使用.

别问我为什么后面的没数据,因为我实在不想测了,太慢了。

image.png


语句二:

2.1 语句:

SELECT * FROM users  AS t1  JOIN (SELECT ROUND(RAND() * ((SELECT MAX(userId) FROM `users`)-(SELECT MIN(userId) FROM users))+(SELECT MIN(userId) FROM users)) AS userId) AS t2 WHERE t1.userId >= t2.userId ORDER BY t1.userId LIMIT 1

2.2 分析:

执行该sql语句,用时0.031s,效率非常好。当把”LIMIT 1“改为了”LIMIT 100“ 随机取一百条记录,用时0.048s。可是就在此时问题出现了,发现结果好像不是随机的。为了验证结果,又执行了N次,的确不是随机的。问题出现 在”ORDER BY t1.userId“这里,按userId排序了。随机取一条记录还是不错的选择,多条就不行了啊。

2.2 测试结果:

效率比较好。在随机获取一条数据时时不错的选择。
在随机获取多条数据时,效率有所下降,并且不具备随机性,不推荐获取多条记录时使用。
image.png


语句三:

3.1 语句:

SELECT FROM users WHERE userId >= ((SELECT MAX(userId) FROM users)-(SELECT MIN(userId) FROM users)) RAND() + (SELECT MIN(userId) FROM users) LIMIT 1

3.2 分析:

执行该sql语句,用时0.039s,效率也是非常好。接着把”LIMIT 1“改为了”LIMIT 10000“,用时0.063s。经过多次验证,得出的结果都是随机的。

3.3 测试结果:

效率非常好。
无论是在获取一条或多条记录时,效率变化不大,并且结果具有随机性。
image.png

总结

image.png

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
5月前
|
人工智能 运维 关系型数据库
数据库运维:mysql 数据库迁移方法-mysqldump
本文介绍了MySQL数据库迁移的方法与技巧,重点探讨了数据量大小对迁移方式的影响。对于10GB以下的小型数据库,推荐使用mysqldump进行逻辑导出和source导入;10GB以上可考虑mydumper与myloader工具;100GB以上则建议物理迁移。文中还提供了统计数据库及表空间大小的SQL语句,并讲解了如何使用mysqldump导出存储过程、函数和数据结构。通过结合实际应用场景选择合适的工具与方法,可实现高效的数据迁移。
1007 1
|
4月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
266 0
|
3月前
|
存储 关系型数据库 MySQL
MySQL数据库中进行日期比较的多种方法介绍。
以上方法提供了灵活多样地处理和对比MySQL数据库中存储地不同格式地日子信息方式。根据实际需求选择适当方式能够有效执行所需操作并保证性能优化。
421 10
|
3月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
320 10
|
4月前
|
SQL Oracle 关系型数据库
比较MySQL和Oracle数据库系统,特别是在进行分页查询的方法上的不同
两者的性能差异将取决于数据量大小、索引优化、查询设计以及具体版本的数据库服务器。考虑硬件资源、数据库设计和具体需求对于实现优化的分页查询至关重要。开发者和数据库管理员需要根据自身使用的具体数据库系统版本和环境,选择最合适的分页机制,并进行必要的性能调优来满足应用需求。
242 11
|
4月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
139 0
|
6月前
|
SQL 数据采集 关系型数据库
实现MySQL与SQL Server之间数据迁移的有效方法
总的来说,从MySQL到SQL Server的数据迁移是一个涉及到很多步骤的过程,可能会遇到各种问题和挑战。但只要精心规划、仔细执行,这个任务是完全可以完成的。
504 18
|
5月前
|
关系型数据库 MySQL
MySQL字符串拼接方法全解析
本文介绍了四种常用的字符串处理函数及其用法。方法一:CONCAT,用于基础拼接,参数含NULL时返回NULL;方法二:CONCAT_WS,带分隔符拼接,自动忽略NULL值;方法三:GROUP_CONCAT,适用于分组拼接,支持去重、排序和自定义分隔符;方法四:算术运算符拼接,仅适用于数值类型,字符串会尝试转为数值处理。通过示例展示了各函数的特点与应用场景。
|
6月前
|
缓存 JSON 关系型数据库
MySQL 查询优化分析 - 常用分析方法
本文介绍了MySQL查询优化分析的常用方法EXPLAIN、Optimizer Trace、Profiling和常用监控指标。

推荐镜像

更多