什么是fine-tuning?

简介: 什么是fine-tuning?

什么是fine-tuning?



在实践中,由于数据集不够大,很少有人从头开始训练网络。常见的做法是使用预训练的网络(例如在ImageNet上训练的分类1000类的网络)来重新fine-tuning(也叫微调),或者当做特征提取器。



以下是常见的两类迁移学习场景:


1 卷积网络当做特征提取器。使用在ImageNet上预训练的网络,去掉最后的全连接层,剩余部分当做特征提取器(例如AlexNet在最后分类器前,是4096维的特征向量)。这样提取的特征叫做CNN codes。得到这样的特征后,可以使用线性分类器(Liner SVM、Softmax等)来分类图像。


2 Fine-tuning卷积网络。替换掉网络的输入层(数据),使用新的数据继续训练。Fine-tune时可以选择fine-tune全部层或部分层。通常,前面的层提取的是图像的通用特征(generic features)(例如边缘检测,色彩检测),这些特征对许多任务都有用。后面的层提取的是与特定类别有关的特征,因此fine-tune时常常只需要Fine-tuning后面的层。



预训练模型


在ImageNet上训练一个网络,即使使用多GPU也要花费很长时间。因此人们通常共享他们预训练好的网络,这样有利于其他人再去使用。例如,Caffe有预训练好的网络地址Model Zoo。



何时以及如何Fine-tune


决定如何使用迁移学习的因素有很多,这是最重要的只有两个:新数据集的大小、以及新数据和原数据集的相似程度。有一点一定记住:网络前几层学到的是通用特征,后面几层学到的是与类别相关的特征。这里有使用的四个场景:


1、新数据集比较小且和原数据集相似。因为新数据集比较小,如果fine-tune可能会过拟合;又因为新旧数据集类似,我们期望他们高层特征类似,可以使用预训练网络当做特征提取器,用提取的特征训练线性分类器。


2、新数据集大且和原数据集相似。因为新数据集足够大,可以fine-tune整个网络。


3、新数据集小且和原数据集不相似。新数据集小,最好不要fine-tune,和原数据集不类似,最好也不使用高层特征。这时可是使用前面层的特征来训练SVM分类器。


4、新数据集大且和原数据集不相似。因为新数据集足够大,可以重新训练。但是实践中fine-tune预训练模型还是有益的。新数据集足够大,可以fine-tine整个网络。



实践建议


预训练模型的限制。使用预训练模型,受限于其网络架构。例如,你不能随意从预训练模型取出卷积层。但是因为参数共享,可以输入任意大小图像;卷积层和池化层对输入数据大小没有要求(只要步长stride fit),其输出大小和属于大小相关;全连接层对输入大小没有要求,输出大小固定。


学习率。与重新训练相比,fine-tune要使用更小的学习率。因为训练好的网络模型权重已经平滑,我们不希望太快扭曲(distort)它们(尤其是当随机初始化线性分类器来分类预训练模型提取的特征时)。



相关文章
|
机器学习/深度学习 数据挖掘
【提示学习】HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification
本文是较早把Prompt应用到层级多标签文本分类领域的论文。思路是把层级标签分层编入到Pattern中,然后修改损失函数以适应多标签的分类任务。
208 0
|
4天前
|
机器学习/深度学习 存储 人工智能
【大语言模型】ACL2024论文-01 Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language
本文介绍了Quantized Side Tuning(QST)方法,旨在解决大型语言模型(LLMs)微调过程中的内存效率和速度问题。QST通过将模型权重量化为4位,并引入一个与LLM分离的侧网络,显著减少了内存占用并加快了微调速度,同时保持了与现有技术相当的性能。实验表明,QST可以将总内存占用减少高达2.3倍,并将微调速度提高高达3倍。
10 0
|
2月前
|
机器学习/深度学习 存储 自然语言处理
如何微调(Fine-tuning)大语言模型?
本文介绍了微调的基本概念,以及如何对语言模型进行微调。
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Fine-tuning
【7月更文挑战第31天】
50 2
|
4月前
LangChain 库和 Fine-tuning 方法结合
【7月更文挑战第30天】
33 4
|
6月前
|
机器学习/深度学习 JSON 自然语言处理
[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training
[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training
90 1
|
6月前
|
自然语言处理 PyTorch 测试技术
[RoBERTa]论文实现:RoBERTa: A Robustly Optimized BERT Pretraining Approach
[RoBERTa]论文实现:RoBERTa: A Robustly Optimized BERT Pretraining Approach
55 0
|
12月前
|
物联网
Fine-tune 的简介
Fine-tune 的简介
239 1
|
机器学习/深度学习 自然语言处理 算法
【论文精读】COLING 2022-KiPT: Knowledge-injected Prompt Tuning for Event Detection
事件检测旨在通过识别和分类事件触发词(最具代表性的单词)来从文本中检测事件。现有的大部分工作严重依赖复杂的下游网络,需要足够的训练数据。
163 0
【论文精读】COLING 2022-KiPT: Knowledge-injected Prompt Tuning for Event Detection