什麽样的资料集不适合用深度学习?

简介: 什麽样的资料集不适合用深度学习?

什麽样的资料集不适合用深度学习?



数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势。



数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性。图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变。对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理。举个例子:预测一个人的健康状况,相关的参数会有年龄、职业、收入、家庭状况等各种元素,将这些元素打乱,并不会影响相关的结果。


 


相关文章
|
6月前
|
编解码 自然语言处理 开发者
复刻Sora有多难?一张图带你读懂Sora的技术路径
OpenAI发布了视频生成模型Sora,最大的Sora模型能够生成一分钟的高保真视频。同时OpenAI称,可扩展的视频生成模型,是构建物理世界通用模拟器的一条可能的路径。
|
25天前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
27 2
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
揭秘深度学习的幕后英雄:如何用智慧和策略战胜训练中的怪兽!
【8月更文挑战第16天】深度学习之路坎坷,如攀险峰,每一步都考验耐心与智慧。超参数调试、数据质量、计算资源、过拟合及收敛难题是常遇挑战。通过网格搜索找最优、数据增强平衡样本、混合精度与梯度累积节省资源、正则化及Dropout防过拟合、以及使用高级优化器助收敛,这些问题得以缓解。每克服一个难关,都是向成功迈进一大步,同时也深化了对深度学习的理解与掌握。
42 4
|
6月前
|
人工智能 自然语言处理 安全
ChatGPT 之言情作家:第十二章到第十九章
ChatGPT 之言情作家:第十二章到第十九章
57 0
|
机器学习/深度学习
本科生60行代码教你手搓GPT大模型,技术介绍堪比教程(2)
本科生60行代码教你手搓GPT大模型,技术介绍堪比教程
162 0
|
机器学习/深度学习 SQL 人工智能
本科生60行代码教你手搓GPT大模型,技术介绍堪比教程(1)
本科生60行代码教你手搓GPT大模型,技术介绍堪比教程
273 0
|
人工智能 JSON 前端开发
大火AutoGPT星标超PyTorch,网友:看清它的局限性
大火AutoGPT星标超PyTorch,网友:看清它的局限性
|
人工智能 安全 机器人
研究者意外发现DALL-E 2在用自创语言生成图像:全文黑话,人类都看不懂
研究者意外发现DALL-E 2在用自创语言生成图像:全文黑话,人类都看不懂
131 0
|
机器学习/深度学习 人工智能 算法
DeepMind攻克50年数学难题!AlphaZero史上最快矩阵乘法算法登Nature封面(2)
DeepMind攻克50年数学难题!AlphaZero史上最快矩阵乘法算法登Nature封面
159 0
|
机器学习/深度学习 人工智能 算法
DeepMind攻克50年数学难题!AlphaZero史上最快矩阵乘法算法登Nature封面(1)
DeepMind攻克50年数学难题!AlphaZero史上最快矩阵乘法算法登Nature封面
270 0
下一篇
无影云桌面