响铃:当AI翻译能识别“语境”,我们的“地球村”梦想就不远了

本文涉及的产品
文本翻译,文本翻译 100万字符
图片翻译,图片翻译 100张
语种识别,语种识别 100万字符
简介: 响铃:当AI翻译能识别“语境”,我们的“地球村”梦想就不远了

image.png


《圣经.旧约》里记载着这样一段故事:

当时人类联合起来兴建希望能通往天堂的高塔,为了阻止人类的计划,上帝让人类说不同语言,使人类相互之间不能沟通,计划因此失败,人类自此各散东西。


巴别塔典故,为世上出现不同语言和种族提供了解释。尽管互联网的出现,让“地球村”的梦想在地理空间上不再是遥不可及,但语言理解与文化背景成为了全球沟通最大的障碍,又生生的让梦想变得骨感起来。


好在,各大搜索引擎都推出了AI翻译。


AI翻译这条赛道上,巨头们都绕不过的“坎”


AI翻译作为垂直搜索产品,因其明朗的落地应用场景而备受巨头们关注。

2016年,GNMT技术(谷歌的神经网络机器翻译技术,模仿人脑的神经思考模式)全面布局于谷歌翻译系统中,随后,谷歌声称其AI翻译的译文质量误差降低了55%-85%,并且将此技术广泛应用于网页翻译与手机应用。


国内,百度当时已经研究出了可应用的SMT技术(统计机器翻译),但得知NMT的横空出世之后,便迅速调转方向转而研发NMT技术,于是就有了BNMT应用于百度翻译。尽管初时的百度翻译速度很慢,但是,百度当时反应也佐证NMT的价值性。


搜狗、阿里、腾讯等公司也都有部署NMT领域,推出多款基于神经网络的在线翻译和手机应用,在智能翻译领域持续发力。360搜索自占据国内搜索引擎行业二哥的位置后,同样专注在AI领域与其他巨头角力,上线了基于NMT的360翻译,以期与去年上线的360英文搜索“双剑合璧”。


但是我们会发现,不论是谷歌还是BAT,其智能翻译从未能声称能替代人工翻译,因为翻译还必须考虑到到使用者的情感及文化背景。从2016年起至今的两年时间里,对海量语料的深度学习逐渐成为AI开发的必修课,也成了巨头们布局AI翻译绕不过的“坎”。


正是在这样的背景下,360翻译的深度学习调度平台卯足了劲,在深层技术和语料挖掘上下苦功夫。除了发挥360搜索在新闻资讯方面的既有优势外,360的英文搜索还与微软旗下的搜索引擎Bing开展技术合作,从而使得其AI翻译背后坐拥海量中英网络语料,让其在理解语境方面更显地道。另外,360翻译采用的也是独家研发的360NMT技术。

但这依然还只是个开始。


搜索平台不约而同发力NMT,为的是哪般?


image.png


不论是国外的谷歌,还是国内的搜索巨头百度、搜狗、360等,均把NMT作为AI翻译的标配,翻译集中的领域在中英互译上,这是一个很有趣的现象。AI翻译真的是块肥肉吗?惹得谁也不愿意掉队。


据统计表明,全球一共有73个国家,超10亿人以英语为官方语言,而汉语则是世界使用人数最多的语言,因此,中英互译本身的用户基数市场就能引起巨头们足够的注意力了。为什么要发力NMT,这得从AI翻译人类语言的方式说起,包含三种:第一,基于规则的机器翻译方法;第二,基于实例的机器翻译方法;第三,基于统计的翻译方法。SMT与NMT都属于第三种,从语料自动学习翻译模型,结合大数据通过评分输出翻译结果。


但是,SMT与NMT存在着显著的差距。SMT采用的模式是通过平行语料进行统计分析,翻译的准确性则与语料的丰富度呈明显的正相关,但是存在着翻译结果太过零散,片面生硬,语法语义混乱的劣势。而模仿人类神经网络构建模型,NMT是以一个句子为基本的处理单元,好处在于翻译过程中有着更好的语感,能降低SMT翻译的关于“形态、句法、词序”等方面出错的概率。因此,NMT在技术上恰巧可以有效弥补SMT的缺陷。而随着语料不断地加码,AI翻译的准确度也就高得多。


AI翻译引进NMT技术,就能精准识别“语境”吗?


搜狗同传翻译在某次国际性会议上,声称其神经网络机器翻译技术已达临界点,并在进行大规模商用推广。只是,搜狗的同传还是在国际会议上出过争议,结果不尽如人意。即便在正式的场合能够应对自如的搜狗,在非正式场合会是怎样一种情况呢?很多时候的中英交流多以口语化形式出现,对“语境”的理解远比“语法和词汇”难得多。下文我们将就几组语句进行讨论(以下从搜狗、360搜索、百度以及谷歌四大平台进行对比)。

第一组:献上我的膝盖。看看,最近这句网络常用语各翻译平台的水平

谷歌:Offer my knee。

360:express my admiration。

百度:Offer my knees。

搜狗:Give me my knee。

测试结果是搜狗、百度、谷歌均倾向于单词表面意思的翻译,并未能结合具体的文化背景,而360对于该网络用语的解释就地道的多。

第二组:诗词,选自杜甫的《登高》。因其诗中主要是以诸多意象组成的意境,看翻译能否反馈这种情感。

《登高》原文摘选:

风急天高猿啸哀,渚清沙白鸟飞回。

英语译文:

image.png

image.pngimage.png

image.png


有趣的是将各自翻译的英文译成中文时,没有一个平台能还原。而在诗歌的中译英中360能够结合“语境”处理诗中的意向要素,搜狗翻译表达出了“悲怆”的情感,而百度翻译和谷歌翻译则完全是从字面上进行翻译,破坏了诗的美好。


第三组:新闻,选自红网。语言简练正式,但涉及的元素较多,对语法的要求性比较高。

原文:据长沙市住房和城乡建设委员会网站显示,2018年5月23日,长沙共计有两个项目获批预售证,均位于雨花区,分别为五矿万境蓝山和创元时代。

译文:

image.pngimage.pngimage.pngimage.png


同一段新闻,出现了四种不同的译法。同一语句中各家强调的点不一样,譬如首句的“长沙市住房和城乡建设委员会”,360的翻译结果更显得专业并符合惯常表述,“长沙市”只是作为补充词出现,而搜狗、百度和谷歌的翻译中,“长沙市”则是作为硬性的地名出现。尤为值得注意的是,根据语境,“五矿万境蓝山”和“创元时代”都是楼盘名字,应当由汉语拼音直译,只有360识别到这一点,搜狗、百度和谷歌三家都在“矿”、“蓝山”、“创元”、“时代”等字眼上纠结。


从这三组中,我们能发现360偏好于基于“语境”的逻辑进行分词,虽然也有做的不到位的,像针对诗词这样复杂的情感语句就无法准确传达,但是在“流行语”优势明显;而谷歌和百度基本上是基于词组进行断句,因此,翻译也是一个词一个词,尤其是对古诗词的理解,谷歌就显得比较忧愁了。


因此,AI翻译的问题主要反映在三大方面:第一,机器翻译难以应对语言规则不统一的口语;第二,AI翻译难以结合文化语境进行理解,解析不出深层次的情感;第三,针对较长的段落,以及较为复杂的语境,往往会出现语法问题多,语句出错率高的毛病。


AI翻译要“地道”,技术倒不是关键


翻译界老将何恩培曾讲:“机器翻译一直被公认为人工智能领域最难的课题之一。而且语言背后的多元文化和复杂社会属性,注定了语言规则不可能规律化”。但是,中国有句老话:勤能补拙。对于AI翻译而言,最难的不是技术,而是“语境”理解,而AI翻译能力的级别高低又体现在这,集中体现了平台喂养语料的资源状况。AI翻译能否“地道”,取决于以下几点。


1、训练数据库的内容整体优质程度

这影响到翻译准确程度,取决于信息资源的整合能力。不论是BAT,还是360、搜狗、有道等,都在注重内容生态建设,搜狗有了腾讯微信入口搜索,360抢占了安全领域的数据来源。但是,这不可能是一个完全开放的体系,没有哪一家能够整合整个互联网的资源,各平台训练数据库各有侧重,AI翻译特色也不尽相同,例如360翻译侧重于地道的口语与流行语,百度翻译则显得大而全。


2、开放平等的中外数据交流,或可加强AI的深度学习

国内对标竞品之间的合作相对较难,但中外数据交流却是最好的互补。因此,百度上线过英文搜索产品,而360与微软Bing有过技术合作。此外,有了国界互译也变得更有意义。因此,中外数据合作,或许对于文化背景的数据积淀有很好的补充,也是扩充深度学习的语料最直接的方式。


3、需要准备大量的网络语及口语语料

除了诗词蕴含深厚文化底蕴外,网络语和口语是与一个地域的文化最为接近的语言形态,时下搜索引擎从被动搜索向主动的、基于用户兴趣的内容推荐引擎转型,这对于构建口语语料训练模型倒是一个不错的尝试。


虽然说,AI翻译能够精准识别“语境”是需要很长一段路要走,但是技术已经在进步,360翻译能够开始揣摩语句背后的情感与心思,对于日常交流来说是一个很好的开端。或许,我们将因此离“地球村”的梦想更进一步!

相关文章
|
6月前
|
机器学习/深度学习 人工智能 监控
AI算法分析,智慧城管AI智能识别系统源码
AI视频分析技术应用于智慧城管系统,通过监控摄像头实时识别违法行为,如违规摆摊、垃圾、违章停车等,实现非现场执法和预警。算法平台检测街面秩序(出店、游商、机动车、占道)和市容环境(垃圾、晾晒、垃圾桶、路面不洁、漂浮物、乱堆物料),助力及时处理问题,提升城市管理效率。
127 4
AI算法分析,智慧城管AI智能识别系统源码
|
6月前
|
机器学习/深度学习 人工智能 监控
AI威胁检测与识别
AI在网络安全中扮演关键角色,实现实时监控、异常检测、高级威胁识别和自动化响应。通过机器学习和深度学习,AI能分析大量数据,预测攻击,智能支持决策,并评估风险。然而,随着攻击手段进化,AI系统的抗攻击性研究和持续升级至关重要。
111 2
|
6月前
|
传感器 人工智能 监控
Springcloud+Vue智慧工地管理云平台源码 AI智能识别
“智慧工地管理平台”以现场实际施工及管理经验为依托,针对工地现场痛点,能在工地落地实施的模块化、一体化综合管理平台。为建筑公司、地产公司、监管单位租赁企业、设备生产厂提供了完整的数据接入和管理服务。
119 2
|
6月前
|
机器学习/深度学习 数据采集 人工智能
【专栏】AI在软件测试中的应用,如自动执行测试用例、识别缺陷和优化测试设计
【4月更文挑战第27天】本文探讨了AI在软件测试中的应用,如自动执行测试用例、识别缺陷和优化测试设计。AI辅助工具利用机器学习、自然语言处理和图像识别提高效率,但面临数据质量、模型解释性、维护更新及安全性挑战。未来,AI将更注重用户体验,提升透明度,并在保护隐私的同时,通过联邦学习等技术共享知识。AI在软件测试领域的前景广阔,但需解决现有挑战。
953 6
|
4月前
|
存储 人工智能 算法
记录阿里云ai助手的上下文语境问题
【7月更文挑战第17天】本文介绍尝试用阿里云AI助手找两字符串的最长公共子串,提供的Go代码因缺失完整返回值而无法编译,未能解决问题。整个过程显示AI理解与响应不够准确连贯。
72 1
记录阿里云ai助手的上下文语境问题
|
6月前
|
人工智能 开发者
AI Earth ——开发者模式案例9:OpenAPI调用AI识别能力
AI Earth ——开发者模式案例9:OpenAPI调用AI识别能力
110 0
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在情感识别方面有哪些具体应用
AI在元宇宙学习中扮演关键角色,通过数据收集分析用户习惯、兴趣,提供个性化推荐。情感识别调整教学策略,智能评估反馈学习效果,实时互动解答问题,自适应学习系统匹配个体需求。同时,注重隐私安全保护,打造高效、精准、个性化的学习环境。
|
6月前
|
机器学习/深度学习 数据采集 人工智能
【AI 场景】设计一个 AI 系统来识别和分类图像中的对象
【5月更文挑战第3天】【AI 场景】设计一个 AI 系统来识别和分类图像中的对象
|
6月前
|
人工智能 JavaScript API
一个接口白嫖四个AI平台, 五个翻译平台
薅夷长技以制夷, 要大薅,快薅,多薅,苦薅,实薅,加油薅,没有了薅字,薅仔就不配当薅仔。薅字当头,薅就完了,就薅
319 4
|
人工智能 文字识别 自然语言处理
探索古彝文AI识别技术:助力中国传统文化的传承与发扬
随着科技的不断发展,OCR(Optical Character Recognition,光学字符识别)技术在各个领域得到了广泛应用。 近年来,古彝文作为一种具有悠久历史和独特魅力的文字,逐渐受到了学者们的关注。探索古彝文识别OCR技术,不仅有助于挖掘、整理和传承中国传统文化,还能为现代科技与文化的交流搭建桥梁。
270 0