Java并发编程实战系列(15)-原子遍历与非阻塞同步机制(上)

简介: Java并发编程实战系列(15)-原子遍历与非阻塞同步机制

非阻塞算法,用底层的原子机器指令代替锁,确保数据在并发访问中的一致性。

非阻塞算法被广泛应用于OS和JVM中实现线程/进程调度机制和GC及锁,并发数据结构中。


与锁相比,非阻塞算法复杂的多,在可伸缩性和活跃性上(避免死锁)有巨大优势。

非阻塞算法,即多个线程竞争相同的数据时不会发生阻塞,因此能更细粒度的层次上进行协调,而且极大减少调度开销。

1 锁的劣势

独占,可见性是锁要保证的。

许多JVM都对非竞争的锁获取和释放做了很多优化,性能很不错。

但若一些线程被挂起然后稍后恢复运行,当线程恢复后还得等待其他线程执行完他们的时间片,才能被调度,所以挂起和恢复线程存在很大开销。

其实很多锁的粒度很小,很简单,若锁上存在激烈竞争,那么 调度开销/工作开销 比值就会非常高,降低业务吞吐量。


而与锁相比,volatile是一种更轻量的同步机制,因为使用volatile不会发生上下文切换或线程调度操作,但volatile的指明问题就是虽然保证了可见性,但是原子性无法保证。


若一个线程正在等待锁,它不能做任何事情

若一个线程在持有锁情况下被延迟执行了,如发生缺页错误,调度延迟,就没法执行

若被阻塞的线程优先级较高,就会出现priority invesion问题,被永久阻塞

2 硬件对并发的支持

独占锁是悲观锁,对细粒度的操作,更高效的应用是乐观锁,这种方法需要借助冲突监测机制,来判断更新过程中是否存在来自其他线程的干扰,若存在,则失败重试

几乎所有现代CPU都有某种形式的原子读-改-写指令,如compare-and-swap等,JVM就是使用这些指令来实现无锁并发。


2.1 比较并交换

CAS(Compare and set)乐观的技术。Java实现的一个compare and set如下,这是一个模拟底层的示例:

@ThreadSafe
public class SimulatedCAS {
    @GuardedBy("this") private int value;
    public synchronized int get() {
        return value;
    }
    public synchronized int compareAndSwap(int expectedValue,
                                           int newValue) {
        int oldValue = value;
        if (oldValue == expectedValue)
            value = newValue;
        return oldValue;
    }
    public synchronized boolean compareAndSet(int expectedValue,
                                              int newValue) {
        return (expectedValue
                == compareAndSwap(expectedValue, newValue));
    }
}

2.2 非阻塞的计数器

public class CasCounter {
    private SimulatedCAS value;
    public int getValue() {
        return value.get();
    }
    public int increment() {
        int v;
        do {
            v = value.get();
        } while (v != value.compareAndSwap(v, v + 1));
        return v + 1;
    }
}

Java中使用AtomicInteger。


竞争激烈一般时,CAS性能远超基于锁的计数器。看起来他的指令更多,但无需上下文切换和线程挂起,JVM内部的代码路径实际很长,所以反而好些。


但激烈程度较高时,开销还是较大,但会发生这种激烈程度非常高的情况只是理论,实际生产环境很难遇到。况且JIT很聪明,这种操作往往能非常大的优化。


为确保正常更新,可能得将CAS操作放到for循环,从语法结构看,使用CAS比使用锁更加复杂,得考虑失败情况(锁会挂起线程,直到恢复)。

但基于CAS的原子操作,性能基本超过基于锁的计数器,即使只有很小的竞争或不存在竞争!


在轻度到中度争用情况下,非阻塞算法的性能会超越阻塞算法,因为 CAS 的多数时间都在第一次尝试时就成功,而发生争用时的开销也不涉及线程挂起和上下文切换,只多了几个循环迭代。

没有争用的 CAS 要比没有争用的锁轻量得多(因为没有争用的锁涉及 CAS 加上额外的处理,加锁至少需要一个CAS,在有竞争的情况下,需要操作队列,线程挂起,上下文切换),而争用的 CAS 比争用的锁获取涉及更短的延迟。


CAS的缺点是,它使用调用者来处理竞争问题,通过重试、回退、放弃,而锁能自动处理竞争问题,例如阻塞。


原子变量可看做更好的volatile类型变量。AtomicInteger在JDK8里面做了改动。

image.png

JDK7里面的实现如下:

image.png

Unsafe是经过特殊处理的,不能理解成常规的Java代码,1.8在调用getAndAddInt时,若系统底层:


支持fetch-and-add,则执行的就是native方法,使用fetch-and-add

不支持,就按照上面getAndAddInt那样,以Java代码方式执行,使用compare-and-swap

这也正好跟openjdk8中Unsafe::getAndAddInt上方的注释相吻合:

以下包含在不支持本机指令的平台上使用的基于 CAS 的 Java 实现


image.png

目录
相关文章
|
5天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
4天前
|
Java 开发者
Java多线程编程的艺术与实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的技术文档,本文以实战为导向,通过生动的实例和详尽的代码解析,引领读者领略多线程编程的魅力,掌握其在提升应用性能、优化资源利用方面的关键作用。无论你是Java初学者还是有一定经验的开发者,本文都将为你打开多线程编程的新视角。 ####
|
3天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
6天前
|
安全 Java 开发者
Java多线程编程中的常见问题与解决方案
本文深入探讨了Java多线程编程中常见的问题,包括线程安全问题、死锁、竞态条件等,并提供了相应的解决策略。文章首先介绍了多线程的基础知识,随后详细分析了每个问题的产生原因和典型场景,最后提出了实用的解决方案,旨在帮助开发者提高多线程程序的稳定性和性能。
|
9天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
下一篇
无影云桌面