Flink CDC 系列 - 同步 MySQL 分库分表,构建 Iceberg 实时数据湖

简介: 本篇教程将展示如何使用 Flink CDC 构建实时数据湖,并处理分库分表合并同步的场景。

作者:罗宇侠

本篇教程将展示如何使用 Flink CDC 构建实时数据湖,并处理分库分表合并同步的场景。
Flink-CDC 项目地址:

https://github.com/ververica/flink-cdc-connectors

Flink 中文学习网站
https://flink-learning.org.cn

在 OLTP 系统中,为了解决单表数据量大的问题,通常采用分库分表的方式将单个大表进行拆分以提高系统的吞吐量。

但是为了方便数据分析,通常需要将分库分表拆分出的表在同步到数据仓库、数据湖时,再合并成一个大表。

这篇教程将展示如何使用 Flink CDC 构建实时数据湖来应对这种场景,本教程的演示基于 Docker,只涉及 SQL,无需一行 Java/Scala 代码,也无需安装 IDE,你可以很方便地在自己的电脑上完成本教程的全部内容。

接下来将以数据从 MySQL 同步到 Iceberg [1] 为例展示整个流程,架构图如下所示:

real-time-data-lake-tutorial

一、准备阶段

准备一台已经安装了 Docker 的 Linux 或者 MacOS 电脑。

1.1 准备教程所需要的组件

接下来的教程将以 docker-compose 的方式准备所需要的组件。

使用下面的内容创建一个 docker-compose.yml 文件:

version: '2.1'
services:
  sql-client:
    user: flink:flink
    image: yuxialuo/flink-sql-client:1.13.2.v1 
    depends_on:
      - jobmanager
      - mysql
    environment:
      FLINK_JOBMANAGER_HOST: jobmanager
      MYSQL_HOST: mysql
    volumes:
      - shared-tmpfs:/tmp/iceberg
  jobmanager:
    user: flink:flink
    image: flink:1.13.2-scala_2.11
    ports:
      - "8081:8081"
    command: jobmanager
    environment:
      - |
        FLINK_PROPERTIES=
        jobmanager.rpc.address: jobmanager
    volumes:
      - shared-tmpfs:/tmp/iceberg
  taskmanager:
    user: flink:flink
    image: flink:1.13.2-scala_2.11
    depends_on:
      - jobmanager
    command: taskmanager
    environment:
      - |
        FLINK_PROPERTIES=
        jobmanager.rpc.address: jobmanager
        taskmanager.numberOfTaskSlots: 2
    volumes:
      - shared-tmpfs:/tmp/iceberg
  mysql:
    image: debezium/example-mysql:1.1
    ports:
      - "3306:3306"
    environment:
      - MYSQL_ROOT_PASSWORD=123456
      - MYSQL_USER=mysqluser
      - MYSQL_PASSWORD=mysqlpw

volumes:
  shared-tmpfs:
    driver: local
    driver_opts:
      type: "tmpfs"
      device: "tmpfs"

该 Docker Compose 中包含的容器有:

  • SQL-Client:Flink SQL Client, 用来提交 SQL 查询和查看 SQL 的执行结果;
  • Flink Cluster:包含 Flink JobManager 和 Flink TaskManager,用来执行 Flink SQL;
  • MySQL:作为分库分表的数据源,存储本教程的 user 表。

docker-compose.yml 所在目录下执行下面的命令来启动本教程需要的组件:

docker-compose up -d

该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动了,也可以通过访问 http://localhost:8081/ 来查看 Flink 是否运行正常。

flink-ui

注意:

  1. 本教程接下来用到的容器相关的命令都需要在 docker-compose.yml 所在目录下执行。
  2. 为了简化整个教程,本教程需要的 jar 包都已经被打包进 SQL-Client 容器中了,镜像的构建脚本可以在 GitHub [2] 上找到。

    如果你想要在自己的 Flink 环境运行本教程,需要下载下面列出的包并且把它们放在 Flink 所在目录的 lib 目录下,即 FLINK_HOME/lib/

    截止目前支持 Flink 1.13 的 iceberg-flink-runtime jar 包还没有发布,所以我们在这里提供了一个支持 Flink 1.13 的 iceberg-flink-runtime jar 包,这个 jar 包是基于 Iceberg 的 master 分支打包的。

    当 Iceberg 0.13.0 版本发布后,你也可以在 apache official repository [3] 下载到支持 Flink 1.13 的 iceberg-flink-runtime jar 包。

1.2 准备数据

  1. 进入 MySQL 容器中:

    docker-compose exec mysql mysql -uroot -p123456
  2. 创建数据和表,并填充数据。

    创建两个不同的数据库,并在每个数据库中创建两个表,作为 user 表分库分表下拆分出的表。

     CREATE DATABASE db_1;
     USE db_1;
     CREATE TABLE user_1 (
       id INTEGER NOT NULL PRIMARY KEY,
       name VARCHAR(255) NOT NULL DEFAULT 'flink',
       address VARCHAR(1024),
       phone_number VARCHAR(512),
       email VARCHAR(255)
     );
     INSERT INTO user_1 VALUES (110,"user_110","Shanghai","123567891234","user_110@foo.com");
    
     CREATE TABLE user_2 (
       id INTEGER NOT NULL PRIMARY KEY,
       name VARCHAR(255) NOT NULL DEFAULT 'flink',
       address VARCHAR(1024),
       phone_number VARCHAR(512),
       email VARCHAR(255)
     );
    INSERT INTO user_2 VALUES (120,"user_120","Shanghai","123567891234","user_120@foo.com");
    CREATE DATABASE db_2;
    USE db_2;
    CREATE TABLE user_1 (
      id INTEGER NOT NULL PRIMARY KEY,
      name VARCHAR(255) NOT NULL DEFAULT 'flink',
      address VARCHAR(1024),
      phone_number VARCHAR(512),
      email VARCHAR(255)
    );
    INSERT INTO user_1 VALUES (110,"user_110","Shanghai","123567891234", NULL);
    
    CREATE TABLE user_2 (
      id INTEGER NOT NULL PRIMARY KEY,
      name VARCHAR(255) NOT NULL DEFAULT 'flink',
      address VARCHAR(1024),
      phone_number VARCHAR(512),
      email VARCHAR(255)
    );
    INSERT INTO user_2 VALUES (220,"user_220","Shanghai","123567891234","user_220@foo.com");

二、在 Flink SQL CLI 中使用 Flink DDL 创建表

首先,使用如下的命令进入 Flink SQL CLI 容器中:

docker-compose exec sql-client ./sql-client

我们可以看到如下界面:

img

然后,进行如下步骤:

  1. 开启 checkpoint

    Checkpoint 默认是不开启的,我们需要开启 Checkpoint 来让 Iceberg 可以提交事务。
    并且,mysql-cdc 在 binlog 读取阶段开始前,需要等待一个完整的 checkpoint 来避免 binlog 记录乱序的情况。

    -- Flink SQL
    -- 每隔 3 秒做一次 checkpoint                 
    Flink SQL> SET execution.checkpointing.interval = 3s;
  2. 创建 MySQL 分库分表 source 表

    创建 source 表 user_source 来捕获MySQL中所有 user 表的数据,在表的配置项 database-name , table-name 使用正则表达式来匹配这些表。
    并且,user_source 表也定义了 metadata 列来区分数据是来自哪个数据库和表。

    -- Flink SQL
    Flink SQL> CREATE TABLE user_source (
        database_name STRING METADATA VIRTUAL,
        table_name STRING METADATA VIRTUAL,
        `id` DECIMAL(20, 0) NOT NULL,
        name STRING,
        address STRING,
        phone_number STRING,
        email STRING,
        PRIMARY KEY (`id`) NOT ENFORCED
      ) WITH (
        'connector' = 'mysql-cdc',
        'hostname' = 'mysql',
        'port' = '3306',
        'username' = 'root',
        'password' = '123456',
        'database-name' = 'db_[0-9]+',
        'table-name' = 'user_[0-9]+'
      );
  3. 创建 Iceberg sink 表

    创建 sink 表 all_users_sink,用来将数据加载至 Iceberg 中。
    在这个 sink 表,考虑到不同的 MySQL 数据库表的 id 字段的值可能相同,我们定义了复合主键 (database_name, table_name, id)。

    -- Flink SQL
    Flink SQL> CREATE TABLE all_users_sink (
        database_name STRING,
        table_name    STRING,
        `id`          DECIMAL(20, 0) NOT NULL,
        name          STRING,
        address       STRING,
        phone_number  STRING,
        email         STRING,
        PRIMARY KEY (database_name, table_name, `id`) NOT ENFORCED
      ) WITH (
        'connector'='iceberg',
        'catalog-name'='iceberg_catalog',
        'catalog-type'='hadoop',  
        'warehouse'='file:///tmp/iceberg/warehouse',
        'format-version'='2'
      );

三、流式写入 Iceberg

  1. 使用下面的 Flink SQL 语句将数据从 MySQL 写入 Iceberg 中:

    -- Flink SQL
    Flink SQL> INSERT INTO all_users_sink select * from user_source;

    上述命令将会启动一个流式作业,源源不断将 MySQL 数据库中的全量和增量数据同步到 Iceberg 中。
    Flink UI [4] 上可以看到这个运行的作业:

    flink-cdc-iceberg-running-job

    然后我们就可以使用如下的命令看到 Iceberg 中的写入的文件:

    docker-compose exec sql-client tree /tmp/iceberg/warehouse/default_database/

    如下所示:

    files-in-iceberg

    在你的运行环境中,实际的文件可能与上面的截图不相同,但是整体的目录结构应该相似。

  2. 使用下面的 Flink SQL 语句查询表 all_users_sink 中的数据:

    -- Flink SQL
    Flink SQL> SELECT * FROM all_users_sink;

    在 Flink SQL CLI 中我们可以看到如下查询结果:

    data_in_iceberg

    修改 MySQL 中表的数据,Iceberg 中的表 all_users_sink 中的数据也将实时更新:

    (3.1) 在 db_1.user_1 表中插入新的一行

    --- db_1
    INSERT INTO db_1.user_1 VALUES (111,"user_111","Shanghai","123567891234","user_111@foo.com");

    (3.2) 更新 db_1.user_2 表的数据

    --- db_1
    UPDATE db_1.user_2 SET address='Beijing' WHERE id=120;

    (3.3) 在 db_2.user_2 表中删除一行

    --- db_2
    DELETE FROM db_2.user_2 WHERE id=220;

    每执行一步,我们就可以在 Flink Client CLI 中使用 SELECT * FROM all_users_sink 查询表 all_users_sink 来看到数据的变化。

    最后的查询结果如下所示:

    final-data-in-iceberg

    从 Iceberg 的最新结果中可以看到新增了(db_1, user_1, 111)的记录,(db_1, user_2, 120)的地址更新成了 Beijing,且(db_2, user_2, 220)的记录被删除了,与我们在 MySQL 做的数据更新完全一致。

四、环境清理

本教程结束后,在 docker-compose.yml 文件所在的目录下执行如下命令停止所有容器:

docker-compose down

五、总结

在本文中,我们展示了如何使用 Flink CDC 同步 MySQL 分库分表的数据,快速构建 Icberg 实时数据湖。用户也可以同步其他数据库(Postgres/Oracle)的数据到 Hudi 等数据湖中。最后希望通过本文,能够帮助读者快速上手 Flink CDC 。

更多 Flink CDC 相关技术问题,可扫码加入社区钉钉交流群~

img

注释:

[1] https://iceberg.apache.org/

[2] https://github.com/luoyuxia/flink-cdc-tutorial/tree/main/flink-cdc-iceberg-demo/sql-client

[3] https://repo.maven.apache.org/maven2/org/apache/iceberg/iceberg-flink-runtime/


Flink Forward Asia 2021

2022 年 1 月 8-9 日,FFA 2021 重磅开启,全球 40+ 多行业一线厂商,80+ 干货议题,带来专属于开发者的技术盛宴。

大会官网:
https://flink-forward.org.cn

大会线上观看地址 (记得预约哦):
https://developer.aliyun.com/special/ffa2021/live

img

更多 Flink 相关技术问题,可扫码加入社区钉钉交流群
第一时间获取最新技术文章和社区动态,请关注公众号~

image.png

活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算Flink版现开启活动:
99 元试用 实时计算Flink版(包年包月、10CU)即有机会获得 Flink 独家定制卫衣;另包 3 个月及以上还有 85 折优惠!
了解活动详情:https://www.aliyun.com/product/bigdata/sc

image.png

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
存储 运维 分布式计算
零售数据湖的进化之路:滔搏从Lambda架构到阿里云Flink+Paimon统一架构的实战实践
在数字化浪潮席卷全球的今天,传统零售企业面临着前所未有的技术挑战和转型压力。本文整理自 Flink Forward Asia 2025 城市巡回上海站,滔搏技术负责人分享了滔搏从传统 Lambda 架构向阿里云实时计算 Flink 版+Paimon 统一架构转型的完整实战历程。这不仅是一次技术架构的重大升级,更是中国零售企业拥抱实时数据湖仓一体化的典型案例。
306 0
|
6月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2657 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
9月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
527 1
Amoro + Flink CDC 数据融合入湖新体验
|
9月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
1588 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
10月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
1200 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
8月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
647 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
4091 74
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

相关产品

  • 实时计算 Flink版