token bucket令牌桶限流算法原理及代码(上)

简介: token bucket令牌桶限流算法原理及代码

1 概述

限流算法主要有如下几种:

  • 基于信号量Semaphore
    只有数量维度,没有时间维度
  • 基于fixed window
    带上了时间维度,不过在两个窗口的临界点容易出现超出限流的情况,比如限制每分钟10个请求,在00:59请求了10次,在01:01又请求了10次,而从00:30-01:30这个时间窗口来看,这一分钟请求了20次,没有控制好

基于rolling window

就是要解决fixed window没解决的窗口临界问题,主要有基于token bucket的算法,以及基于leaky bucket的算法

token bucket算法

token按指定速率添加到bucket中

一个bucket有其容量限制,超过其容量则多余的token会被丢弃

当请求到来时,先试图获取token,如果剩余token足够则放行,不够则不允许放行(可能等待token足够再继续)

2 简单实现

2.1 Java版

/**
 * The minimalistic token-bucket implementation
 */
public class MinimalisticTokenBucket {
    private final long capacity;
    private final double refillTokensPerOneMillis;
    private double availableTokens;
    private long lastRefillTimestamp;
    /**
     * Creates token-bucket with specified capacity and refill rate equals to refillTokens/refillPeriodMillis
     */
    public MinimalisticTokenBucket(long capacity, long refillTokens, long refillPeriodMillis) {
        this.capacity = capacity;
        this.refillTokensPerOneMillis = (double) refillTokens / (double) refillPeriodMillis;
        this.availableTokens = capacity;
        this.lastRefillTimestamp = System.currentTimeMillis();
    }
    synchronized public boolean tryConsume(int numberTokens) {
        refill();
        if (availableTokens < numberTokens) {
            return false;
        } else {
            availableTokens -= numberTokens;
            return true;
        }
    }
    private void refill() {
        long currentTimeMillis = System.currentTimeMillis();
        if (currentTimeMillis > lastRefillTimestamp) {
            long millisSinceLastRefill = currentTimeMillis - lastRefillTimestamp;
            double refill = millisSinceLastRefill * refillTokensPerOneMillis;
            this.availableTokens = Math.min(capacity, availableTokens + refill);
            this.lastRefillTimestamp = currentTimeMillis;
        }
    }
    private static final class Selftest {
        public static void main(String[] args) {
            // 100 tokens per 1 second
            MinimalisticTokenBucket limiter = new MinimalisticTokenBucket(100, 100, 1000);
            long startMillis = System.currentTimeMillis();
            long consumed = 0;
            while (System.currentTimeMillis() - startMillis < 10000) {
                if (limiter.tryConsume(1)) {
                    consumed++;
                }
            }
            System.out.println(consumed);
        }
    }
}

以上是bucket4j给出的一个简单实现,用于理解token bucket算法。

这个算法没有采用线程去refill token,因为bucket太多的话,线程太多,耗cpu

这个算法没有存储每个period使用的token,设计了lastRefillTimestamp字段,用于计算需要填充的token

每次tryConsume的时候,方法内部首先调用refill,根据设定的速度以及时间差计算这个时间段需要补充的token,更新availableTokens以及lastRefillTimestamp

之后限流判断,就是判断availableTokens与请求的numberTokens


目录
相关文章
|
10天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
|
10天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
|
20天前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
81 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
149 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
27天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
27天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
160 14

热门文章

最新文章

下一篇
开通oss服务