完全开源!快速上手 AI 理论及应用实战来了

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 完全开源!快速上手 AI 理论及应用实战来了

大家好,好久没给大家推荐优质的机器学习 GitHub 开源资料了。最近逛 GitHub,发现了一个非常不错的 AI 资料,兼顾理论和实战,非常不错!


首先放上该资源的 GitHub 地址:


https://github.com/ben1234560/AiLearning-Theory-Applying


该资源名为《AiLearning-Theory-Applying》,作者是 ben1234560。该开源项目主要包含了 AI 领域的 5 大模块,具体目录如下:


  • 必备数学基础Basic knowledge
  • 机器学习MachineLearning
  • 深度学习入门DeepLearning
  • NLP通用框架BERT项目实战
  • 机器学习算法原理及推导


详细目录如下:


111.jpg

一、必备数学基础Basic knowledge


这部分包含了机器学习、深度学习必备的数学基础,包含:高等数学基础、微积分、泰勒公式、线性代数等等。每个知识点根据难易程度都有了比较详尽的介绍,例如贝叶斯分析部分,作者做了较为细致的介绍。


例如几个关键的基础概念:分布函数、概率密度函数、概率质量函数、似然函数、边缘分布等。


image.png

二、机器学习MachineLearning


机器学习部分,项目主要从 5 个竞赛实战项目来由浅入深介绍。包括:信用卡欺诈检测(含数据集)、工业化工生产预测(含数据集)、智慧城市-道路通行时间预测(含数据集)、建筑能源利用率预测(含数据集)、快手用户活跃预测(含数据集)、机器学习实战小项目(含数据集)等。毕竟实战才能把我们的理论验证一下~


信用卡欺诈检测为例,主要是使用逻辑回归算法来实现分类问题。不仅包含了赛题的介绍、理论,还有实战代码,以 .ipynb 的形式,很方便阅读理解和实操。


https://github.com/ben1234560/AiLearning-Theory-Applying/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AB%9E%E8%B5%9B%E5%AE%9E%E6%88%98_%E4%BC%98%E8%83%9C%E8%A7%A3%E5%86%B3%E6%96%B9%E6%A1%88/%E4%BF%A1%E7%94%A8%E5%8D%A1%E6%AC%BA%E8%AF%88%E6%A3%80%E6%B5%8B/%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92-%E4%BF%A1%E7%94%A8%E5%8D%A1%E6%AC%BA%E8%AF%88%E6%A3%80%E6%B5%8B.ipynb


image.png

三、深度学习入门DeepLearning


深度学习包含了 5 个章节:深度学习必备知识点、走进深度学习的世界、神经网络模型 卷积神经网络、递归神经网络与词向量原理解读、LSTM网络架构与情感分析应用实例。


LSTM网络架构与情感分析应用实例部分以一个情感分析实例来深化理论知识。


四、NLP通用框架BERT项目实战


NLP通用框架BERT项目实战主要包含:NLP通用框架BERT原理解读、BERT源码解读与应用实例、基于BERT的中文情感分析实战 3 个部分。以目前 NLP 领域火热的 BERT 模型为例,进行了理论介绍和一个中文情感分析的实战项目。


image.png

五、机器学习算法原理及推导


机器学习算法原理及推导回归理论,主要介绍李航——统计学习方法和李宏毅——异常检测的原理介绍和推导过程。


统计学习方法:


image.png

异常检测:


image.png

总结


总的来说,这份开源的 AI 理论与实战项目包含了很多有价值的内容,包含了理论推导和算法实战,是一份不错的资源。希望对大家有所帮助!


最后再次放上该项目的 GitHub 地址:


https://github.com/ben1234560/AiLearning-Theory-Applying

相关文章
|
9天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
12天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
13天前
|
人工智能 开发框架 搜索推荐
今日 AI 开源|共 10 项| 复合 AI 模型,融合多个开源 AI 模型组合解决复杂推理问题
今日 AI 简报涵盖多项技术革新,包括多模态检索增强生成框架、高保真虚拟试穿、视频生成、生成式软件开发、上下文感知记忆管理等,展示了 AI 在多个领域的广泛应用和显著进步。
105 10
今日 AI 开源|共 10 项| 复合 AI 模型,融合多个开源 AI 模型组合解决复杂推理问题
|
13天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
57 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1天前
|
数据采集 机器学习/深度学习 人工智能
AI在医疗诊断中的应用与挑战
随着人工智能(AI)技术的飞速发展,其在医疗领域的应用也日益广泛。从辅助医生进行疾病诊断到提供个性化治疗方案,AI技术正在改变着传统医疗模式。然而,AI在医疗诊断中的应用并非一帆风顺,面临着数据质量、模型可解释性、法规政策等一系列挑战。本文将从AI在医疗诊断中的具体应用场景出发,探讨其面临的主要挑战及未来发展趋势。
|
1天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗健康领域中的多维度应用,从疾病诊断、个性化治疗到健康管理,展现了AI如何革新传统医疗模式。通过分析当前实践案例与最新研究成果,文章揭示了AI技术提升医疗服务效率、精准度及患者体验的巨大潜力,并展望了其在未来医疗体系中不可或缺的地位。 ####
|
4天前
|
存储 人工智能 缓存
官宣开源 阿里云与清华大学共建AI大模型推理项目Mooncake
近日,清华大学和研究组织9#AISoft,联合以阿里云为代表的多家企业和研究机构,正式开源大模型资源池化项目 Mooncake。
|
9天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
36 4
|
11天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。