<LeetCode天梯>Day027 合并两个有序链表(递归法+改进递归) | 初级算法 | Python

简介: <LeetCode天梯>Day027 合并两个有序链表(递归法+改进递归) | 初级算法 | Python

以下为我的天梯积分规则:


每日至少一题:一题积分+10分

若多做了一题(或多一种方法解答),则当日积分+20分(+10+10)

若做了三道以上,则从第三题开始算+20分(如:做了三道题则积分-10+10+20=40;做了四道题则积分–10+10+20+20=60)


初始分为100分

若差一天没做题,则扣积分-10分(周六、周日除外注:休息)

坚持!!!


初级算法

刷题目录

链表


image.png

image.png

题干

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。

示例1:

image.png

输入:l1 = [1,2,4], l2 = [1,3,4]

输出:[1,1,2,3,4,4]


示例2:


输入:l1 = [], l2 = []

输出:[]


示例3:


输入:l1 = [], l2 = [0]

输出:[0]


提示:


两个链表的节点数目范围是 [0, 50]

-100 <= Node.val <= 100

l1 和 l2 均按 非递减顺序 排列

递归法

分析:


递归法,和之前的一样,还是需要先设置跳出判断,这里设置为空的时候跳出。

后面设置判断,比较当前节点的值得大小。

class Solution:
    def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode:
        # 递归法
        # 设置跳出条件
        if l1 is None :return l2
        if l2 is None :return l1
        # 比较当前节点的大小
        if l1.val <= l2.val:
            l1.next = self.mergeTwoLists(l1.next, l2)
            return l1
        else:
            l2.next = self.mergeTwoLists(l1,l2.next)
            return l2

image.png

递归再链表用的比较多,需要学的扎实一点!!!

改进递归法

分析:

设置哑节点,然后也是进行比较,在赋值。引用下大佬的代码

# 递归法
class Solution:
    def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode:
        dummy = ListNode(0) # 哑节点
        move = dummy
        # 开始比较 
        while l1 and l2:
            if l1.val <= l2.val:
                move.next = l1
                l1 = l1.next
            else:
                move.next = l2
                l2 = l2.next 
            # 每次比较完,要移动一位
            move = move.next 
        move.next = l1 if l1 else l2 # 追加不为空的链表
        return dummy.next # 返回 表头哑节点的下一节点

image.png


相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
47 0
|
1月前
|
算法 索引
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
46 0
|
1月前
|
算法
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
43 0
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
27 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
6天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
6天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
11天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
10天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
28 2
|
19天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
20 3
|
19天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!