【python入门到精通】python装饰器的应用详解

简介: 【python入门到精通】python装饰器的应用详解

🚀 作者 :“大数据小禅”


🚀 粉丝福利 :加入小禅的大数据社群


🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬


目录

Python中的装饰器及其应用

什么是装饰器模式

在不修改原有类的情况下去添加一个新的功能

从实际例子来看装饰器

这个时候,如果不想修改原有的函数,又想增加一个计算时间的功能,咋整?

另一种方式:

第二种方式并没有修改func函数的内部实现,而是使用装饰器模式对其功能进行装饰增强

Python中的装饰器及其应用

明月装饰了你的窗子,你装饰了别人的梦

什么是装饰器模式

装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结*

构。这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装。

这种模式创建了一个装饰类,用来包装原有的类,并在保持类方法签名完整性的前提下,提

供了额外的功能。


在不修改原有类的情况下去添加一个新的功能


import time
start = time.time()     #计算执行函数的时间
time.sleep(4)
end = time.time()
print(end - start)
输出:
4.000851154327393

image.png

import time
start = time.time()     #计算执行函数的时间
time.sleep(4)
end = time.time()
print(end - start)
输出:
4.000851154327393

image.png

import time
def my_fun():
  print("这是一个函数")
def my_time(func):
    begin = time.time()   #获取当前系统时间戳
    time.sleep(2)
    func()                #直接调用函数让它去执行上面的我们传入的函数。
    end = time.time()
    print(end - begin)
my_time(my_fun)
#输出:
这里一个函数
2.0034534565   

image.png

def print_cost(func):             #这个装饰器说到底就是把我们要增加的一个功能,写在里面的一个wrapper里面,然后返回,然后在真正要修饰的一个函数里,加上@装饰器名字。
    def wrapper():              #这个函数,要给my_fun()增加的功能都写在这里
        begin = time.time()
        time.sleep(2)
        func()
        end = time.time()
        print(end - begin)
    return wrapper
@print_cost
def my_fun():                        #上面的func,就等于是print_cost(my_func),这样子的用法。
    print("这里一个函数")
my_fun()
#输出:
这里一个函数
2.000412702560425
import time
def print_cost(func):
    def wrapper():              #这个函数,要给my_fun()增加的功能都写在这里
        begin = time.time()
        time.sleep(1)
        print("stop")
        func()
        print("start")
        end = time.time()
        print(end - begin)
    return wrapper
@print_cost
def my_fun():
    print("这里一个函数")
my_fun()
输出:
stop
这里一个函数
start
1.0000886917114258

image.png

相关文章
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
71 20
|
1月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
104 61
Python装饰器实战:打造高效性能计时工具
|
1月前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
90 59
|
21天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
125 9
|
2月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
164 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
26天前
|
存储 SQL 大数据
Python 在企业级应用中的两大硬伤
关系数据库和SQL在企业级应用中面临诸多挑战,如复杂SQL难以移植、数据库负担重、应用间强耦合等。Python虽是替代选择,但在大数据运算和版本管理方面存在不足。SPL(esProc Structured Programming Language)作为开源语言,专门针对结构化数据计算,解决了Python的这些硬伤。它提供高效的大数据运算能力、并行处理、高性能文件存储格式(如btx、ctx),以及一致的版本管理,确保企业级应用的稳定性和高性能。此外,SPL与Java无缝集成,适合现代J2EE体系应用,简化开发并提升性能。
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
45 2
|
1月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
41 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
2月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
48 5
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
74 0

热门文章

最新文章