数据科学实训案例研发:农业遥感图像数据分析上线阿里云

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 这是2020年阿里云计算有限公司-教育部产学合作协同育人项目的成果。实训课程内容涵盖了主要内容涵盖了图像分割的基础知识,主要包括图像分割的概论、基础、分类、神经网络实现等经典的机器学习理论知识,也包括卷积神经网络、残差网络、U-Net算法、多模态等深度学习内容。此外,还介绍天池AI等平台的应用,在此基础上通过实验的方式,详细地介绍机器视觉在农业大数据分析领域的过程,以及遥感图像处理相关技术的原理与实践。结合阿里云的产品和技术资源,进行应用实验,让学生在充分理解掌握基础知识的同时,也能接触到业界最前沿的发展方向和成果。本课程通过实验大作业的方式,实现典型的机器视觉应用,训练学生模型设计与应用。

具体的内容如下:
1.遥感图像数据预处理实验: 针对遥感图像的格式进行数据集切分和训练数据生成,并在天池AI平台中DSW中实现。
2.遥感图像数据图像增强方法实验:针对遥感图像中样本只有2-3个文件的情况下实现深度学习算法数据增强。
3.遥感图像语义分割基本处理方法、评价指标和结果可视化: 对语义分割网络的评价指标和结果进行可视化。
4.基于DeepLab算法的农业大数据图像分割:基于天池AI平台的DSW实现DeepLab算法对遥感图像中农作物进行图像分割分析。
5.基于改进的DeepLab算法的农业大数据图像分割:基于天池AI平台的DSW实现DeepLab算法改进,实现遥感图像中农作物进行图像分割性能提升。
6.基于基本U-Net算法的农业遥感图像分割:基于天池AI平台的DSW实现U-Net算法遥感图像中农作物进行图像分割分析。
7.基于改进的U-Net算法的农业遥感图像分割:基于天池AI平台的DSW实现U-Net算法优化,提升遥感图像中农作物进行图像分割性能。
8.基于基本FCN算法的农业大数据图像分割:基于天池AI平台的DSW实现FCN算法对遥感图像中农作物进行图像分割分析。
9.基于改进的FCN算法的农业大数据图像分割:基于天池AI平台的DSW实现FCN算法优化,用于遥感图像中农作物进行图像分割分析。
10.基于PSPNet算法的农业大数据图像分割:基于天池AI平台的DSW实现PSPNet算法对遥感图像中农作物进行图像分割分析。

需要使用的师生可以用如下方式申请:
深度学习”实验链接和“农业遥感图像数据分析”实验链接邀请可以邮件wdzhao@fudan.edu.cn联系我更新。
此实训课程与深度学习及其应用课程绑定:https://www.icourse163.org/course/FUDAN-1205806833,欢迎一起学习探讨深度学习及其应用。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
72 2
|
5月前
|
数据采集 存储 数据挖掘
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
本文介绍了一个基于Python的书旗网小说网站数据采集与分析系统,通过自动化爬虫收集小说数据,利用Pandas进行数据处理,并通过Matplotlib和Seaborn等库进行数据可视化,旨在揭示用户喜好和市场趋势,为图书出版行业提供决策支持。
465 6
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
|
1月前
|
机器学习/深度学习 数据采集 DataWorks
数据分析经典案例重现:使用DataWorks Notebook 实现Kaggle竞赛之房价预测,成为数据分析大神!
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合DataWorks Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。
|
3月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
303 0
|
5月前
|
数据采集 数据可视化 关系型数据库
【优秀python 数据分析案例】基于python的穷游网酒店数据采集与可视化分析的设计与实现
本文介绍了一个基于Python的穷游网酒店数据采集与可视化分析系统,通过爬虫技术自动抓取酒店信息,并利用数据分析算法和可视化工具,提供了全国主要城市酒店的数量、星级、价格、评分等多维度的深入洞察,旨在为旅行者和酒店经营者提供决策支持。
179 4
【优秀python 数据分析案例】基于python的穷游网酒店数据采集与可视化分析的设计与实现
|
5月前
|
JSON 数据挖掘 API
案例 | 用pdpipe搭建pandas数据分析流水线
案例 | 用pdpipe搭建pandas数据分析流水线
60 2
|
5月前
|
数据采集 存储 数据可视化
【优秀python数据分析案例】基于python的中国天气网数据采集与可视化分析的设计与实现
本文介绍了一个基于Python的中国天气网数据采集与可视化分析系统,通过requests和BeautifulSoup库实现数据爬取,利用matplotlib、numpy和pandas进行数据可视化,提供了温湿度变化曲线、空气质量图、风向雷达图等分析结果,有效预测和展示了未来天气信息。
1895 3
|
5月前
|
数据采集 数据可视化 数据挖掘
【优秀python案例】基于python爬虫的深圳房价数据分析与可视化实现
本文通过Python爬虫技术从链家网站爬取深圳二手房房价数据,并进行数据清洗、分析和可视化,提供了房价走势、区域房价比较及房屋特征等信息,旨在帮助购房者更清晰地了解市场并做出明智决策。
236 2
|
5月前
|
数据采集 数据可视化 算法
基于Python flask的boss直聘数据分析与可视化系统案例,能预测boss直聘某个岗位某个城市的薪资
本文介绍了一个基于Python Flask框架的Boss直聘数据分析与可视化系统,系统使用selenium爬虫、MySQL和csv进行数据存储,通过Pandas和Numpy进行数据处理分析,并采用模糊匹配算法进行薪资预测。
146 0
基于Python flask的boss直聘数据分析与可视化系统案例,能预测boss直聘某个岗位某个城市的薪资
|
6月前
|
存储 数据挖掘 OLAP
阿里云 EMR Serverless StarRocks OLAP 数据分析场景解析
阿里云 E-MapReduce Serverless StarRocks 版是阿里云提供的 Serverless StarRocks 全托管服务,提供高性能、全场景、极速统一的数据分析体验,具备开箱即用、弹性扩展、监控管理、慢 SQL 诊断分析等全生命周期能力。内核 100% 兼容 StarRocks,性能比传统 OLAP 引擎提升 3-5 倍,助力企业高效构建大数据应用。本篇文章对阿里云EMR Serverless StarRocks OLAP 数据分析场景进行解析、存算分离架构升级以及 Trino 兼容,无缝替换介绍。
19249 12