面试官:Redis 有哪些拓展方案?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 作为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。

前言

Redis大家都不陌生,就算是没用过,也都听说过了。


作为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。


笔者下文会对各种方案进行介绍,并且给出场景,实现 等等概述,还会提到一些新手常见的误区。

正文

先从基础的拓展方式开始,这样更便于理解较高级的模式。


分区

概述

分区(Partitioning)是一种最为简单的拓展方式。


在我们面临单机的存储空间瓶颈时,第一点就能想到像传统的关系型数据库一样,进行数据分区。


或者假设手中有N台机器可以作为Redis服务器


所有机器内存总和有256G, 而客户端正好也需要一个大内存的存储空间。


我们除了可以把内存条都拆下来焊到一个机器上,也可以选择分区使用,这样又拓展了计算能力。


单指分区来讲,即将全部数据分散在多个Redis实例中,每个实例不需要关联,可以是完全独立的。


image.png


使用方式

客户端处理

和传统的数据库分库分表一样,可以从key入手,先进行计算,找到对应数据存储的实例在进行操作。


范围角度,比如orderId:1orderId:1000放入实例1,orderId:1001orderId:2000放入实例2...


哈希计算,就像我们的hashmap一样,用hash函数加上位运算或者取模,高级玩法还有一致性Hash等操作,找到对应的实例进行操作


使用代理中间件

我们可以开发独立的代理中间件,屏蔽掉处理数据分片的逻辑,独立运行。


当然也有他人已经造好的轮子,Redis也有优秀的代理中间件,譬如Twemproxy,或者codis,可以结合场景选择是否使用。


缺点

无缘多key操作,key都不一定在一个实例上,那么多key操作或者多key事务自然是不支持。

维护成本,由于每个实例在物理和逻辑上,都属于单独的一个节点,缺乏统一管理。

灵活性有限,范围分片还好,比如hash+MOD这种方式,如果想动态调整Redis实例的数量,就要考虑大量数据迁移,这就非常麻烦了。

同为开发者,深知我们虽然总能“曲线救国”的完成一些当前环境不支持的功能,但是总归要麻烦一些。


主从

概述数据迁移

常说的主从(Master-Slave),也就是复制(Replication)方式,怎么称呼都可以。


同上面的分区一样,也是Redis高可用架构的基础,新手可能会误以为这类基础模式即是“高可用”,这并不是十分正确的。


分区暂时能解决单点无法容纳的数据量问题,但是一个Key还是只在一个实例上,在大流量时代显得不那么可靠。


主从就是另一个纬度的拓展,节点将数据同步到从节点,就像将实例“分身”了一样,可靠性又提高了不少。


图画的有些夸张了,主要还是想体现结构灵活,是一主一从,还是一主多从,还是一主多从多从... 看你心情


有了“实例分身”,自然就可以做读写分离,将读流量均摊在各个从节点。


使用方式


高手云集的时代,聊天软件难免要备上这么一张表情包。


这表情包和使用方式有什么关系呢?首先看看使用方式:


作为主节点的Redis实例,并不要求配置任何参数,只需要正常启动

作为从节点的实例,使用配置文件或命令方式REPLICAOF 主节点Host 主节点port即可完成主从配置

是不是和表情包一样,“dalao”没动,我去“抱大腿”。


这样一个主从最小配置就完成了,主从实例即可对外提供服务。


命令里的“主节点”是相对的,slave也可以抱slave大腿,也就是上文提到的结构灵活。


缺点

slave节点都是只读的,如果写流量大的场景,就有些力不从心了。 那我把slave节点只读关掉不就行了?当然不行,数据复制是由主到从,从节点独有数据同步不到主节点,数据就不一致了。

故障转移不友好,主节点挂掉后,写处理就无处安放,需要手工的设定新的主节点,如使用REPLICAOF no one(谁大腿我都不抱了) 晋升为主节点,再梳理其他slave节点的新主配置,相对来说比较麻烦。

哨兵

概述

主从的手工故障转移,肯定让人很难接受,自然就出现了高可用方案-哨兵(Sentinel)。


我们可以在主从架构不变的场景,直接加入Redis Sentinel,对节点进行监控,来完成自动的故障发现与转移。


并且还能够充当配置提供者,提供主节点的信息,就算发生了故障转移,也能提供正确的地址。


哨兵本身也是Redis实例的一种,但不作为数据存储方使用,启动命令也是不一样的。


虽然图有些复杂,看起来像要召唤光能使者。


其实实际使用起来是很便捷的。


使用方式


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
9天前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
|
10天前
|
存储 缓存 NoSQL
Redis 面试题
Redis 基础面试题
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
1月前
|
存储 监控 NoSQL
Redis集群方案汇总:概念性介绍
本文介绍了Redis的三种高可用和分布式解决方案:**Redis Replication(主从复制)**、**Redis Sentinel(哨兵模式)** 和 **Redis Cluster(集群模式)**。Redis Replication实现数据备份和读写分离,适合数据安全和负载均衡场景;Redis Sentinel提供自动故障转移和监控功能,适用于读写分离架构;Redis Cluster通过分布式存储和自动故障转移,解决单点性能瓶颈,适合大规模数据和高并发场景。文中还详细描述了各方案的工作原理、优缺点及适用场景。
39 0
|
2月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
2月前
|
存储 NoSQL 算法
面试官:Redis 大 key 多 key,你要怎么拆分?
本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
面试官:Redis 大 key 多 key,你要怎么拆分?
|
3月前
|
NoSQL Java API
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试一线互联网企业时遇到了关于Redis分布式锁过期及自动续期的问题。尼恩对此进行了系统化的梳理,介绍了两种核心解决方案:一是通过增加版本号实现乐观锁,二是利用watch dog自动续期机制。后者通过后台线程定期检查锁的状态并在必要时延长锁的过期时间,确保锁不会因超时而意外释放。尼恩还分享了详细的代码实现和原理分析,帮助读者深入理解并掌握这些技术点,以便在面试中自信应对相关问题。更多技术细节和面试准备资料可在尼恩的技术文章和《尼恩Java面试宝典》中获取。
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
|
2月前
|
存储 NoSQL Redis
Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet
|
1月前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
178 85
|
3月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
96 6