面试官:生成订单 30 分钟未支付,则自动取消,该怎么实现?

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 对上述的任务,我们给一个专业的名字来形容,那就是延时任务。那么这里就会产生一个问题,这个延时任务和定时任务的区别究竟在哪里呢?一共有如下几点区别

在开发中,往往会遇到一些关于延时任务的需求。


例如


生成订单30分钟未支付,则自动取消

生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。那么这里就会产生一个问题,这个延时任务和定时任务的区别究竟在哪里呢?一共有如下几点区别


定时任务有明确的触发时间,延时任务没有


定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期


定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务


下面,我们以判断订单是否超时为例,进行方案分析


方案分析

1、数据库轮询

思路

该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作


实现

博主当年早期是用quartz来实现的(实习那会的事),简单介绍一下


maven项目引入一个依赖如下所示

<dependency>
    <groupId>org.quartz-scheduler</groupId>
    <artifactId>quartz</artifactId>
    <version>2.2.2</version>
</dependency>

调用Demo类MyJob如下所示

package com.rjzheng.delay1;
import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
public class MyJob implements Job {
    public void execute(JobExecutionContext context)
            throws JobExecutionException {
        System.out.println("要去数据库扫描啦。。。");
    }
    public static void main(String[] args) throws Exception {
        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                .withIdentity("job1", "group1").build();
        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger()
                .withIdentity("trigger1", "group3")
                .withSchedule(
                        SimpleScheduleBuilder.simpleSchedule()
                                .withIntervalInSeconds(3).repeatForever())
                .build();
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }
}

运行代码,可发现每隔3秒,输出如下


要去数据库扫描啦。。。


优缺点


优点:简单易行,支持集群操作


缺点:(1)对服务器内存消耗大


(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟


(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大


2、JDK的延迟队列

思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。


DelayedQueue实现工作流程如下图所示


image.png


其中Poll():获取并移除队列的超时元素,没有则返回空


take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。


实现

定义一个类OrderDelay实现Delayed,代码如下

权协议,转载请附上原文出处链接及本声明。

package com.rjzheng.delay2;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;
public class OrderDelay implements Delayed {
    private String orderId;
    private long timeout;
    OrderDelay(String orderId, long timeout) {
        this.orderId = orderId;
        this.timeout = timeout + System.nanoTime();
    }
    public int compareTo(Delayed other) {
        if (other == this)
            return 0;
        OrderDelay t = (OrderDelay) other;
        long d = (getDelay(TimeUnit.NANOSECONDS) - t
                .getDelay(TimeUnit.NANOSECONDS));
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    }
    // 返回距离你自定义的超时时间还有多少
    public long getDelay(TimeUnit unit) {
        return unit.convert(timeout - System.nanoTime(),TimeUnit.NANOSECONDS);
    }
    void print() {
        System.out.println(orderId+"编号的订单要删除啦。。。。");
    }
}

运行的测试Demo为,我们设定延迟时间为3秒

package com.rjzheng.delay2;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;
public class DelayQueueDemo {
     public static void main(String[] args) {  
            // TODO Auto-generated method stub  
            List<String> list = new ArrayList<String>();  
            list.add("00000001");  
            list.add("00000002");  
            list.add("00000003");  
            list.add("00000004");  
            list.add("00000005");  
            DelayQueue<OrderDelay> queue = newDelayQueue<OrderDelay>();  
            long start = System.currentTimeMillis();  
            for(int i = 0;i<5;i++){  
                //延迟三秒取出
                queue.put(new OrderDelay(list.get(i),  
                        TimeUnit.NANOSECONDS.convert(3,TimeUnit.SECONDS)));  
                    try {  
                         queue.take().print();  
                         System.out.println("After " +  
                                 (System.currentTimeMillis()-start) + " MilliSeconds");  
                } catch (InterruptedException e) {  
                    // TODO Auto-generated catch block  
                    e.printStackTrace();  
                }  
            }  
        }  
}

输出如下

00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除


优缺点


优点:效率高,任务触发时间延迟低。


缺点:


(1)服务器重启后,数据全部消失,怕宕机 (2)集群扩展相当麻烦 (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常 (4)代码复杂度较高


3、时间轮算法

思路

先上一张时间轮的图(这图到处都是啦)


image.png


时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。


如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)


实现

我们用Netty的HashedWheelTimer来实现


给Pom加上下面的依赖

<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-all</artifactId>
    <version>4.1.24.Final</version>
</dependency>

测试代码HashedWheelTimerTest如下所示

package com.rjzheng.delay3;
import io.netty.util.HashedWheelTimer;
import io.netty.util.Timeout;
import io.netty.util.Timer;
import io.netty.util.TimerTask;
import java.util.concurrent.TimeUnit;
public class HashedWheelTimerTest {
    static class MyTimerTask implements TimerTask{
        boolean flag;
        public MyTimerTask(boolean flag){
            this.flag = flag;
        }
        public void run(Timeout timeout) throws Exception {
            // TODO Auto-generated method stub
             System.out.println("要去数据库删除订单了。。。。");
             this.flag =false;
        }
    }
    public static void main(String[] argv) {
        MyTimerTask timerTask = new MyTimerTask(true);
        Timer timer = new HashedWheelTimer();
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
        int i = 1;
        while(timerTask.flag){
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            System.out.println(i+"秒过去了");
            i++;
        }
    }
}

输出如下

1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了

优缺点


优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。


缺点:


(1)服务器重启后,数据全部消失,怕宕机


(2)集群扩展相当麻烦


(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常


4、redis缓存

思路一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值


添加元素:ZADD key score member [[score member] [score member] …]


按顺序查询元素:ZRANGE key start stop [WITHSCORES]


查询元素score:ZSCORE key member


移除元素:ZREM key member [member …]


测试如下

添加单个元素
redis> ZADD page_rank 10 google.com
(integer) 1
添加多个元素
redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2
redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"
查询元素的score值
redis> ZSCORE page_rank bing.com
"8"
移除单个元素
redis> ZREM page_rank google.com
(integer) 1
redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示

image.png

实现一

package com.rjzheng.delay4;
import java.util.Calendar;
import java.util.Set;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;
public class AppTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);
    public static Jedis getJedis() {
       return jedisPool.getResource();
    }
    //生产者,生成5个订单放进去
    public void productionDelayMessage(){
        for(int i=0;i<5;i++){
            //延迟3秒
            Calendar cal1 = Calendar.getInstance();
            cal1.add(Calendar.SECOND, 3);
            int second3later = (int) (cal1.getTimeInMillis() / 1000);
            AppTest.getJedis().zadd("OrderId",second3later,"OID0000001"+i);
            System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);
        }
    }
    //消费者,取订单
    public void consumerDelayMessage(){
        Jedis jedis = AppTest.getJedis();
        while(true){
            Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);
            if(items == null || items.isEmpty()){
                System.out.println("当前没有等待的任务");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                continue;
            }
            int  score = (int) ((Tuple)items.toArray()[0]).getScore();
            Calendar cal = Calendar.getInstance();
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);
            if(nowSecond >= score){
                String orderId = ((Tuple)items.toArray()[0]).getElement();
                jedis.zrem("OrderId", orderId);
                System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
            }
        }
    }
    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        appTest.consumerDelayMessage();
    }
}

此时对应输出如下

image.png

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

package com.rjzheng.delay4;
import java.util.concurrent.CountDownLatch;
public class ThreadTest {
    private static final int threadNum = 10;
    private static CountDownLatch cdl = newCountDownLatch(threadNum);
    static class DelayMessage implements Runnable{
        public void run() {
            try {
                cdl.await();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            AppTest appTest =new AppTest();
            appTest.consumerDelayMessage();
        }
    }
    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        for(int i=0;i<threadNum;i++){
            new Thread(new DelayMessage()).start();
            cdl.countDown();
        }
    }
}

输出如下所示

image.png

显然,出现了多个线程消费同一个资源的情况。

解决方案

(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。

(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    jedis.zrem("OrderId", orderId);
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}

修改为

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    Long num = jedis.zrem("OrderId", orderId);
    if( num != null && num>0){
        System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
    }
}

在这种修改后,重新运行ThreadTest类,发现输出正常了


思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。


实现二


在redis.conf中,加入一条配置


notify-keyspace-events Ex


运行代码如下

package com.rjzheng.delay5;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub;
public class RedisTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedis = new JedisPool(ADDR, PORT);
    private static RedisSub sub = new RedisSub();
    public static void init() {
        new Thread(new Runnable() {
            public void run() {
                jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
            }
        }).start();
    }
    public static void main(String[] args) throws InterruptedException {
        init();
        for(int i =0;i<10;i++){
            String orderId = "OID000000"+i;
            jedis.getResource().setex(orderId, 3, orderId);
            System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");
        }
    }
    static class RedisSub extends JedisPubSub {
        <ahref='http://www.jobbole.com/members/wx610506454'>@Override</a>
        public void onMessage(String channel, String message) {
            System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");
        }
    }
}

输出如下

image.png

可以明显看到3秒过后,订单取消了


ps:redis的pub/sub机制存在一个硬伤,官网内容如下


原:Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.


翻: Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。


优缺点


优点:(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。(2)做集群扩展相当方便 (3)时间准确度高


缺点:(1)需要额外进行redis维护


5、使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列


RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter


lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。


优缺点


优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。


缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
7月前
|
SQL 数据挖掘 数据处理
「SQL面试题库」 No_28 订单最多的客户
「SQL面试题库」 No_28 订单最多的客户
|
消息中间件 NoSQL 算法
面试官:怎么不用定时任务实现关闭订单?
面试官:怎么不用定时任务实现关闭订单?
面试官:怎么不用定时任务实现关闭订单?
|
测试技术 数据库 Python
软件测试面试题:不可逆的操作,如何处理,比如删除一个订单这种接口如何测试
软件测试面试题:不可逆的操作,如何处理,比如删除一个订单这种接口如何测试
225 0
|
4月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
1月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
1月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
1月前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
73 4
|
2月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
93 2
|
2月前
|
JSON 安全 前端开发
第二次面试总结 - 宏汉科技 - Java后端开发
本文是作者对宏汉科技Java后端开发岗位的第二次面试总结,面试结果不理想,主要原因是Java基础知识掌握不牢固,文章详细列出了面试中被问到的技术问题及答案,包括字符串相关函数、抽象类与接口的区别、Java创建线程池的方式、回调函数、函数式接口、反射以及Java中的集合等。
38 0
|
4月前
|
XML 存储 JSON
【IO面试题 六】、 除了Java自带的序列化之外,你还了解哪些序列化工具?
除了Java自带的序列化,常见的序列化工具还包括JSON(如jackson、gson、fastjson)、Protobuf、Thrift和Avro,各具特点,适用于不同的应用场景和性能需求。

热门文章

最新文章