终于搞懂了Java 8 的内存结构,再也不纠结方法区和常量池了!!

简介: Java虚拟机在执行的时候会把管理的内存分配成不同的区域,这些区域被称为虚拟机内存,同时,对于虚拟机没有直接管理的物理内存,也有一定的利用,这些被利用却不在虚拟机内存数据区的内存,我们称它为本地内存,这两种内存有一定的区别:

Java8内存结构图

image.png


虚拟机内存与本地内存的区别

Java虚拟机在执行的时候会把管理的内存分配成不同的区域,这些区域被称为虚拟机内存,同时,对于虚拟机没有直接管理的物理内存,也有一定的利用,这些被利用却不在虚拟机内存数据区的内存,我们称它为本地内存,这两种内存有一定的区别:


JVM内存

受虚拟机内存大小的参数控制,当大小超过参数设置的大小时就会报OOM

本地内存

本地内存不受虚拟机内存参数的限制,只受物理内存容量的限制

虽然不受参数的限制,但是如果内存的占用超出物理内存的大小,同样也会报OOM

java运行时数据区域

java虚拟机在执行过程中会将所管理的内存划分为不同的区域,有的随着线程产生和消失,有的随着java进程产生和消失,根据《Java虚拟机规范》的规定,运行时数据区分为以下一个区域:


程序计数器(Program Counter Register)

程序计数器就是当前线程所执行的字节码的行号指示器,通过改变计数器的值,来选取下一行指令,通过他来实现跳转、循环、恢复线程等功能。


在任何时刻,一个处理器内核只能运行一个线程,多线程是通过线程轮流切换,分配时间来完成的,这就需要有一个标志来记住每个线程执行到了哪里,这里便需要到了程序计数器。

所以,程序计数器是线程私有的,每个线程都已自己的程序计数器。

虚拟机栈(JVM Stacks)


image.png

虚拟机栈是线程私有的,随线程生灭。虚拟机栈描述的是线程中的方法的内存模型:


每个方法被执行的时候,都会在虚拟机栈中同步创建一个栈帧(stack frame)。


每个栈帧的包含如下的内容


局部变量表


局部变量表中存储着方法里的java基本数据类型(byte/boolean/char/int/long/double/float/short)以及对象的引用(注:这里的基本数据类型指的是方法内的局部变量)

操作数栈


动态连接


方法返回地址


方法被执行时入栈,执行完后出栈


虚拟机栈可能会抛出两种异常:


如果线程请求的栈深度大于虚拟机所规定的栈深度,则会抛出StackOverFlowError即栈溢出

如果虚拟机的栈容量可以动态扩展,那么当虚拟机栈申请不到内存时会抛出OutOfMemoryError即OOM内存溢出

本地方法栈(Native Method Stacks)

本地方法栈与虚拟机栈的作用是相似的,都会抛出OutOfMemoryError和StackOverFlowError,都是线程私有的,主要的区别在于:


虚拟机栈执行的是java方法

本地方法栈执行的是native方法(什么是Native方法?)

Java堆(Java Heap)

java堆是JVM内存中最大的一块,由所有线程共享,是由垃圾收集器管理的内存区域,主要存放对象实例,当然由于java虚拟机的发展,堆中也多了许多东西,现在主要有:


对象实例


类初始化生成的对象

基本数据类型的数组也是对象实例

字符串常量池


字符串常量池原本存放于方法区,jdk7开始放置于堆中。

字符串常量池存储的是string对象的直接引用,而不是直接存放的对象,是一张string table

静态变量


静态变量是有static修饰的变量,jdk7时从方法区迁移至堆中

线程分配缓冲区(Thread Local Allocation Buffer)


线程私有,但是不影响java堆的共性

增加线程分配缓冲区是为了提升对象分配时的效率

java堆既可以是固定大小的,也可以是可扩展的(通过参数-Xmx和-Xms设定),如果堆无法扩展或者无法分配内存时也会报OOM。


方法区(Method Area)

方法区绝对是网上所有关于java内存结构文章争论的焦点,因为方法区的实现在java8做了一次大革新,现在我们来讨论一下:


方法区是所有线程共享的内存,在java8以前是放在JVM内存中的,由永久代实现,受JVM内存大小参数的限制,在java8中移除了永久代的内容,方法区由元空间(Meta Space)实现,并直接放到了本地内存中,不受JVM参数的限制(当然,如果物理内存被占满了,方法区也会报OOM),并且将原来放在方法区的字符串常量池和静态变量都转移到了Java堆中,方法区与其他区域不同的地方在于,方法区在编译期间和类加载完成后的内容有少许不同,不过总的来说分为这两部分:


类元信息(Klass)


类元信息在类编译期间放入方法区,里面放置了类的基本信息,包括类的版本、字段、方法、接口以及常量池表(Constant Pool Table)

常量池表(Constant Pool Table)存储了类在编译期间生成的字面量、符号引用(什么是字面量?什么是符号引用?),这些信息在类加载完后会被解析到运行时常量池中

运行时常量池(Runtime Constant Pool)


运行时常量池主要存放在类加载后被解析的字面量与符号引用,但不止这些

运行时常量池具备动态性,可以添加数据,比较多的使用就是String类的intern()方法

直接内存

直接内存位于本地内存,不属于JVM内存,但是也会在物理内存耗尽的时候报OOM,所以也讲一下。


在jdk1.4中加入了NIO(New Input/Putput)类,引入了一种基于通道(channel)与缓冲区(buffer)的新IO方式,它可以使用native函数直接分配堆外内存,然后通过存储在java堆中的DirectByteBuffer对象作为这块内存的引用进行操作,这样可以在一些场景下大大提高IO性能,避免了在java堆和native堆来回复制数据。


常见问题

什么是Native方法?

由于java是一门高级语言,离硬件底层比较远,有时候无法操作底层的资源,于是,java添加了native关键字,被native关键字修饰的方法可以用其他语言重写,这样,我们就可以写一个本地方法,然后用C语言重写,这样来操作底层资源。当然,使用了native方法会导致系统的可移植性不高,这是需要注意的。


成员变量、局部变量、类变量分别存储在内存的什么地方?

类变量


类变量是用static修饰符修饰,定义在方法外的变量,随着java进程产生和销毁

在java8之前把静态变量存放于方法区,在java8时存放在堆中

成员变量


成员变量是定义在类中,但是没有static修饰符修饰的变量,随着类的实例产生和销毁,是类实例的一部分

由于是实例的一部分,在类初始化的时候,从运行时常量池取出直接引用或者值,与初始化的对象一起放入堆中

局部变量


局部变量是定义在类的方法中的变量

在所在方法被调用时放入虚拟机栈的栈帧中,方法执行结束后从虚拟机栈中弹出,所以存放在虚拟机栈中

由final修饰的常量存放在哪里?


final关键字并不影响在内存中的位置,具体位置请参考上一问题。


类常量池、运行时常量池、字符串常量池有什么关系?有什么区别?


类常量池与运行时常量池都存储在方法区,而字符串常量池在jdk7时就已经从方法区迁移到了java堆中。


在类编译过程中,会把类元信息放到方法区,类元信息的其中一部分便是类常量池,主要存放字面量和符号引用,而字面量的一部分便是文本字符,在类加载时将字面量和符号引用解析为直接引用存储在运行时常量池;


对于文本字符来说,它们会在解析时查找字符串常量池,查出这个文本字符对应的字符串对象的直接引用,将直接引用存储在运行时常量池;字符串常量池存储的是字符串对象的引用,而不是字符串本身。


什么是字面量?什么是符号引用?

字面量

int a=1;//这个1便是字面量
String b="iloveu";//iloveu便是字面量

符号引用


由于在编译过程中并不知道每个类的地址,因为可能这个类还没有加载,所以如果你在一个类中引用了另一个类,那么你完全无法知道他的内存地址,那怎么办,我们只能用他的类名作为符号引用,在类加载完后用这个符号引用去获取他的内存地址。


例子:我在com.demo.Solution类中引用了com.test.Quest,那么我会把com.test.Quest作为符号引用存到类常量池,等类加载完后,拿着这个引用去方法区找这个类的内存地址。


原文链接:https://blog.csdn.net/qq_35621494/article/details/107351237


版权声明:本文为CSDN博主「lei6393」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。



相关文章
|
27天前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
47 4
|
1月前
|
存储 缓存 Java
【深入浅出】揭秘Java内存模型(JMM):并发编程的基石
本文深入解析Java内存模型(JMM),揭示synchronized与volatile的底层原理,剖析主内存与工作内存、可见性、有序性等核心概念,助你理解并发编程三大难题及Happens-Before、内存屏障等解决方案,掌握多线程编程基石。
|
2月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
226 3
|
2月前
|
缓存 监控 Kubernetes
Java虚拟机内存溢出(Java Heap Space)问题处理方案
综上所述, 解决Java Heap Space溢出需从多角度综合施策; 包括但不限于配置调整、代码审查与优化以及系统设计层面改进; 同样也不能忽视运行期监控与预警设置之重要性; 及早发现潜在风险点并采取相应补救手段至关重要.
465 17
|
3月前
|
存储 监控 算法
Java垃圾回收机制(GC)与内存模型
本文主要讲述JVM的内存模型和基本调优机制。
|
3月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。
|
3月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
127 0
|
3月前
|
监控 Kubernetes Java
最新技术栈驱动的 Java 绿色计算与性能优化实操指南涵盖内存优化与能效提升实战技巧
本文介绍了基于Java 24+技术栈的绿色计算与性能优化实操指南。主要内容包括:1)JVM调优,如分代ZGC配置和结构化并发优化;2)代码级优化,包括向量API加速数据处理和零拷贝I/O;3)容器化环境优化,如K8s资源匹配和节能模式配置;4)监控分析工具使用。通过实践表明,这些优化能显著提升性能(响应时间降低40-60%)同时降低资源消耗(内存减少30-50%,CPU降低20-40%)和能耗(服务器功耗减少15-35%)。建议采用渐进式优化策略。
175 1
|
4月前
|
SQL 缓存 安全
深度理解 Java 内存模型:从并发基石到实践应用
本文深入解析 Java 内存模型(JMM),涵盖其在并发编程中的核心作用与实践应用。内容包括 JMM 解决的可见性、原子性和有序性问题,线程与内存的交互机制,volatile、synchronized 和 happens-before 等关键机制的使用,以及在单例模式、线程通信等场景中的实战案例。同时,还介绍了常见并发 Bug 的排查与解决方案,帮助开发者写出高效、线程安全的 Java 程序。
222 0
|
4月前
|
存储 Java
Java对象的内存布局
在HotSpot虚拟机中,Java对象的内存布局分为三部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。对象头包含Mark Word、Class对象指针及数组长度;实例数据存储对象的实际字段内容;对齐填充用于确保对象大小为8字节的整数倍。