9 大主题卷积神经网络(CNN)的 PyTorch 实现

简介: 9 大主题卷积神经网络(CNN)的 PyTorch 实现

image.png


之前,红色石头发文介绍过一份很不错的资源:


52 个深度学习目标检测模型汇总,论文、源码一应俱全!


深度系统介绍了 52 个目标检测模型,纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的 M2Det,新模型层出不穷,性能也越来越好!


上文聚焦于源码和论文,对于各种卷积神经网络模型的实现,本文将介绍它们的 PyTorch 实现,非常有用!


这份资源已经开源在了 GitHub 上,链接如下:


https://github.com/shanglianlm0525/PyTorch-Networks


先来个总结介绍,该系列的卷积神经网络实现包含了 9 大主题,目录如下:


1. 典型网络

2. 轻量级网络

3. 目标检测网络

4. 语义分割网络

5. 实例分割网络

6. 人脸检测和识别网络

7. 人体姿态识别网络

8. 注意力机制网络

9. 人像分割网络


下面具体来看一下:


1. 典型网络(Classical network)


典型的卷积神经网络包括:AlexNet、VGG、ResNet、InceptionV1、InceptionV2、InceptionV3、InceptionV4、Inception-ResNet。


image.png

以 AlexNet 网络为例,AlexNet 是 2012 年 ImageNet 竞赛冠军获得者 Hinton 和他的学生 Alex Krizhevsky 设计的。AlexNet 中包含了几个比较新的技术点,也首次在 CNN 中成功应用了 ReLU、Dropout 和 LRN 等 Trick。同时 AlexNet 也使用了 GPU 进行运算加速。


image.png

AlexNet 网络结构的 PyTorch 实现方式如下:

import torch
import torch.nn as nn
def Conv3x3BNReLU(in_channels,out_channels,stride,padding=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )
def Conv1x1BNReLU(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )
def ConvBNReLU(in_channels,out_channels,kernel_size,stride,padding=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )
def ConvBN(in_channels,out_channels,kernel_size,stride,padding=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
            nn.BatchNorm2d(out_channels)
        )
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ResidualBlock, self).__init__()
        mid_channels = out_channels//2
        self.bottleneck = nn.Sequential(
            ConvBNReLU(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),
            ConvBNReLU(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, stride=1, padding=1),
            ConvBNReLU(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),
        )
        self.shortcut = ConvBNReLU(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1)
    def forward(self, x):
        out = self.bottleneck(x)
        return out+self.shortcut(x)


2.轻量级网络(Lightweight)


轻量级网络包括:GhostNet、MobileNets、MobileNetV2、MobileNetV3、ShuffleNet、ShuffleNet V2、SqueezeNet Xception MixNet GhostNet。


2.jpg


以 GhostNet 为例,同样精度,速度和计算量均少于此前 SOTA 算法。GhostNet 的核心是 Ghost 模块,与普通卷积神经网络相比,在不更改输出特征图大小的情况下,其所需的参数总数和计算复杂度均已降低,而且即插即用。


image.png

GhostNet 网络结构的 PyTorch 实现方式如下:


https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/Lightweight/GhostNet.py


3. 目标检测网络(ObjectDetection)


目标检测网络包括:SSD、YOLO、YOLOv2、YOLOv3、FCOS、FPN、RetinaNet Objects as Points、FSAF、CenterNet FoveaBox。


image.pngimage.pngimage.png

以 YOLO 系列为例,YOLO(You Only Look Once)是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。目前 YOLOv3 应用比较多。


image.png


YOLOV3 网络结构的 PyTorch 实现方式如下:


https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/ObjectDetection/YOLOv3.py


4. 语义分割网络(SemanticSegmentation)


语义分割网络包括:FCN、Fast-SCNN、LEDNet、LRNNet、FisheyeMODNet。


image.png

以 FCN 为例,FCN 诞生于 2014 的语义分割模型先驱,主要贡献为在语义分割问题中推广使用端对端卷积神经网络,使用反卷积进行上采样。FCN 模型非常简单,里面全部是由卷积构成的,所以被称为全卷积网络,同时由于全卷积的特殊形式,因此可以接受任意大小的输入。


image.png


FCN 网络结构的 PyTorch 实现方式如下:


https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/SemanticSegmentation/FCN.py


5. 实例分割网络(InstanceSegmentation)


实例分割网络包括:PolarMask。


image.png


6. 人脸检测和识别网络(commit VarGFaceNet)


人脸检测和识别网络包括:FaceBoxes、LFFD、VarGFaceNet。


image.png


7. 人体姿态识别网络(HumanPoseEstimation)


人体姿态识别网络包括:Stacked Hourglass、Networks Simple Baselines、LPN。


image.png


8. 注意力机制网络


注意力机制网络包括:SE Net、scSE、NL Net、GCNet、CBAM。


image.png


9. 人像分割网络(PortraitSegmentation)


人像分割网络包括:SINet。


综上,该 GitHub 开源项目展示了近些年来主流的 9 大类卷积神经网络,总共包含了几十种具体的网络结构。其中每个网络结构都有 PyTorch 实现方式。还是很不错的。


最后再放上 GitHub 开源地址:


https://github.com/shanglianlm0525/PyTorch-Networks




相关文章
|
20天前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
56 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
36 7
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
14天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
15天前
|
机器学习/深度学习 人工智能 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
24 1
|
19天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
23天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
20天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
35 0
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
257 2