架构设计之高可扩展性(上)

简介: 架构设计之高可扩展性(上)

高可扩展性表示可通过加机器线性提高系统处理能力,承担更高流量和并发。


由于峰值的流量不可控,不可能在系统架构设计初期就考虑好机器数量以支持并发。


一般基于成本考虑,在业务平稳期,会预留30%~50%冗余机器应对运营活动或者推广可能带来的峰值流量,但当有突发事件时,流量可能瞬间提升几倍。莫过于明星公布恋情,大家都会到两人微博下互动,微博流量短时内迅速增长,微博信息流也短暂出现无法刷新消息,系统一时间不可用。

所以如何应对突发的流量呢?

最快的方式就是堆机器。不过能保证扩容三倍机器后,系统也能支撑三倍的流量吗?



系统瓶颈在哪里?


通过在单机系统中增加处理核心,可增加系统的并行处理能力,但当并行任务数较多时,系统会因为争抢资源而达到性能拐点,处理能力不升反降。


集群系统也是这样。不同的系统分层上可能存在一些“瓶颈”,这些瓶颈点制约着统的横向扩展能力。

比如系统流量1000 QPS,对DB也是1000 QPS。若流量增加10倍,虽然系统可通过扩容正常服务,DB却成瓶颈。或单机网络带宽50Mbps,若扩容到30台机器,前端负载均衡带宽就超过千兆带宽限制,也会成为瓶颈点。

所以系统中存在哪些服务会成为系统扩展的瓶颈呢?


无状态的服务和组件很易于扩展,但是MySQL这种存储服务有状态,较难扩展。因为向存储集群中增减机器时,涉及大量数据迁移,一般关系型DB都不支持。

DB、缓存、依赖的第三方、负载均衡、交换机带宽等都是系统扩展时需考虑因素。得清楚系统并发达到某量级后,哪个因素会成为系统瓶颈点,从而对症下药。



高可扩展性设计


拆分,把庞杂系统拆分成独立、单一职责的模块。

注意对不同类型模块,拆分原则不同。假如设计一个知乎,那么会有几个模块呢?至少5个模块。

用户:负责维护社区用户信息,注册,登陆等;

关系:用户之间关注、好友、拉黑等关系的维护;

内容:社区发的内容,就像朋友圈或者微博的内容;

评论、赞:用户可能会有的两种常规互动操作;

搜索:用户的搜索,内容的搜索。


部署方式遵照最简单三层部署架构


负载均衡负责请求的分发

应用服务器负责业务逻辑的处理

数据库负责数据的存储落地

所有模块的业务代码混合,数据也都存在一个库。



存储层的扩展性


无论是存储数据量,还是并发访问量,不同业务模块间量级相差很大。

比如知乎,关系数据量远大于用户数据量,但用户数据的访问量却远比关系数据大。所以假如存储目前的瓶颈点是容量,那只需针对关系模块的数据做拆分,而无需拆分用户模块数据。所以存储拆分首先考虑业务维度。


拆分后,这简单社区系统就有用户库、内容库、评论库、点赞库和关系库。这还能隔离故障,某库挂了不会影响到其它DB。


按DB业务拆分后的部署架构

image.png

业务拆分一定程度提升了系统扩展性,但运行久后,单一业务DB在容量和并发请求量上仍会超过单机限制。需针对DB做二次拆分。


这次拆分按照数据特征做水平的拆分,比如给用户库增加俩节点,然后将用户数据拆分库。


水平拆分后,即可突破单机限制。不能随意地增加节点,因为一旦增加节点就需手动迁移数据。所以长远考虑最好一次增加足够节点,避免频繁扩容。


当DB按业务和数据维度拆分后,尽量不要使用事务。因为当一个事务同时更新不同DB,需使用二阶段提交,来协调所有DB要么全部更新成功,要么全部更新失败。


目录
相关文章
|
2月前
|
监控 API 开发者
深入理解微服务架构:构建可扩展的应用程序
【10月更文挑战第6天】深入理解微服务架构:构建可扩展的应用程序
52 0
|
3月前
|
存储 缓存 API
探索后端技术:构建高效、可扩展的系统架构
在当今数字化时代,后端技术是构建任何成功应用程序的关键。它不仅涉及数据存储和处理,还包括确保系统的高效性、可靠性和可扩展性。本文将深入探讨后端开发的核心概念,包括数据库设计、服务器端编程、API 开发以及云服务等。我们将从基础开始,逐步深入到更高级的主题,如微服务架构和容器化技术。通过实际案例分析,本文旨在为读者提供一个全面的后端开发指南,帮助大家构建出既高效又具有高度可扩展性的系统架构。
100 14
|
2月前
|
监控 持续交付 API
深入理解微服务架构:构建高效、可扩展的系统
【10月更文挑战第14天】深入理解微服务架构:构建高效、可扩展的系统
104 0
|
2月前
|
消息中间件 监控 API
理解微服务架构:构建灵活和可扩展的应用
【10月更文挑战第7天】理解微服务架构:构建灵活和可扩展的应用
|
2月前
|
消息中间件 监控 API
深入理解微服务架构:构建可扩展与灵活的应用
【10月更文挑战第7天】深入理解微服务架构:构建可扩展与灵活的应用
48 0
|
28天前
|
监控 持续交付 API
深入理解微服务架构:构建高效、可扩展的系统
深入理解微服务架构:构建高效、可扩展的系统
49 3
|
1月前
|
监控 前端开发 JavaScript
探索微前端架构:构建可扩展的现代Web应用
【10月更文挑战第29天】本文探讨了微前端架构的核心概念、优势及实施策略,通过将大型前端应用拆分为多个独立的微应用,提高开发效率、增强可维护性,并支持灵活的技术选型。实际案例包括Spotify和Zalando的成功应用。
|
1月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
99 1
|
1月前
|
监控 测试技术 持续交付
深入理解微服务架构:构建高效、可扩展的系统
深入理解微服务架构:构建高效、可扩展的系统
54 0
|
2月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
63 3

热门文章

最新文章