聊一聊差分放大器

简介: 聊一聊差分放大器

目录

1、共模抑制比(CMRR)


2、低容差电阻


3、高噪声增益


4、单电容滚降


5、运算放大器输入端之间的电容


大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。经典四电阻差动放大器,如下图所示:


image.png


该放大器的传递函数为:


image.png


若R1 = R3且R2 = R4,则公式 1 简化为:

image.png



经典的四电阻差分放大器似乎很简单,但其在电路中的性能却不佳。这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。


本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。


1、共模抑制比(CMRR)

差动放大器的一项重要功能是抑制两路输入的共模信号。如上图所示,假设V2 为 5 V,V1 为 3 V,则 4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的"理想"增益施加于 2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT,无法与真实信号相区别。


差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。


在 1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为:


image.png


其中:


Ad为差动放大器的增益,

t 为电阻容差。

因此,在单位增益和 1%电阻情况下,CMRR等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)—— 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。


2、低容差电阻

对上图电路进行优化设计,如下所示:


image.png

具有高噪声增益的低端检测

该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB。幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。


在举个例子,如下图所示 :

image.png


低端检测,示例2

该示例具有较低的噪声增益,但它使用 3 mV失调、10-µV/°C失调漂移和 79 dB CMR的低精度四通道运算放大器。在 0 A至 3.6 A范围内,要求达到±5 mA精度。若采用±0.5%检测电阻,则要求的±0.14%精度便无法实现。若使用 100 mΩ电阻,则±5 mA电流可产生±500 µV压降。不幸的是,运算放大器随温度变化的失调电压要比测量值大十倍。哪怕VOS调整为零,50°C的温度变化就会耗尽全部误差预算。若噪声增益为13,则VOS的任何变化都将扩大13 倍。为了改善性能,应使用零漂移运算放大器(比如AD8638, ADA4051, 或ADA4528、薄膜电阻阵列以及精度更高的检测电阻。


3、高噪声增益

下图中的设计用来测量高端电流,其噪声增益为 250。OP07C运算放大器的VOS最大额定值为 150 µV。最大误差为 150 µV × 250 = 37.5 mV。为了改善性能,采用ADA4638 零漂移运算放大器。该器件在–40°C至+125°C温度范围内的额定失调电压为 12.5 µV。然而,由于高噪声增益,共模电压将非常接近检测电阻两端的电压。OP07C的输入电压范围(IVR)为 2 V,这表示输入电压必须至少比正电轨低 2 V。对于ADA4638 而言,IVR = 3 V。


image.png

高端电流检测

4、单电容滚降

下图中的示例稍为复杂,目前为止,所有的等式都针对电阻而言,但更准确的做法是,它们应当将阻抗考虑在内。在加入电容的情况下(无论是故意添加的电容或是寄生电容),交流CMRR均取决于目标频率下的阻抗比。若要滚降该示例中的频率响应,则可在反馈电阻两端添加电容C2,如通常会在反相运算放大器配置中做的那样。

image.png


尝试创建低通响应

如需匹配阻抗比Z1 = Z3 和Z2 = Z4,就必须添加电容C4。市场上很容易就能买到 0.1%或更好的电阻,但哪怕是 0.5%的电容售价都要高于 1 美元。极低频率下的阻抗可能无关紧要,但电 容容差或PCB布局产生的两个运算放大器输入端 0.5 pF的差额可导致 10 kHz时交流CMR下降 6 dB。这在使用开关稳压器时显得尤为重要。


单芯片差动放大器(如AD8271, AD8274,或AD8276)具有好 得多的交流CMRR性能,因为运算放大器的两路输入处于芯片上的可控环境下,且价格通常较分立式运算放大器和四个精密电阻更为便宜。


5、运算放大器输入端之间的电容

为了滚降差动放大器的响应,某些设计人员会尝试在两个运算放大器输入端之间添加电容C1 以形成差分滤波器,如下图所示:

image.png


输入电容降低高频反馈

这样做对于仪表放大器而言是可行的,但对于运算放大器却不可行。VOUT将会通过R2 而上下移动,形成闭合环路。在直流时,这不会产生任何问题,并且电路的表现与等式 2 所描 述的相一致。随着频率的增加,C1 电抗下降。进入运算放大器输入端的反馈降低,从而导致增益上升。最终,运算放大器会在开环状态下工作,因为电容使输入短路。


在波特图上,运算放大器的开环增益在–20dB/dec处下降,但噪声增益在+20 dB/dec处上升,形成–40dB/dec交越。正如控制系统课堂上所学到的,它必然产生振荡。一般而言,永远不要在运算放大器的输入端之间使用电容(极少数情况下例外,但本文不作讨论)。


无论是分立式或是单芯片,四电阻差动放大器的使用都非常广泛。为了获得稳定且值得投入生产的设计,应仔细考虑噪声增益、输入电压范围、阻抗比和失调电压规格。


相关文章
|
4月前
|
算法
数字逻辑与模拟电子技术-部分知识点(2)——模电部分-半导体三极管、基本线性运放电路、正弦波振荡电路
数字逻辑与模拟电子技术-部分知识点(2)——模电部分-半导体三极管、基本线性运放电路、正弦波振荡电路
43 0
|
5月前
|
新能源 Python
物理电学:探索电荷、电场与电路之美
物理电学:探索电荷、电场与电路之美
51 0
|
12月前
|
传感器
全差分运算放大器
全差分运算放大器(Fully Differential Operational Amplifier,简称FDA)是一种特殊的运算放大器,具有两个差分输入和两个差分输出。它的输入和输出均为差分信号,可以用于放大差分信号、抑制共模信号、降低噪音等。
172 0
|
5月前
|
机器学习/深度学习 算法
基于Volterra级数的DFE判决反馈均衡器可见光通信系统误码率matlab仿真
该内容是关于使用Volterra级数和判决反馈均衡器(DFE)改进可见光通信(VLC)系统的一段描述。展示了算法在matlab2022a中的应用,包括Volterra级数的非线性系统模型和DFE的结构,用于抵消非线性失真和码间干扰。还给出了部分核心MATLAB代码,涉及信号调制、滤波、噪声处理和均衡器权重计算等步骤。
|
10月前
放大电路与频率特征(期末模电速成)
放大电路与频率特征(期末模电速成)
65 1
|
10月前
集成运算放大器的线性应用(模电速成)
集成运算放大器的线性应用(模电速成)
146 0
|
10月前
集成运算放大器的非线性应用(模电速成)
集成运算放大器的非线性应用(模电速成)
64 0
|
12月前
|
算法
【一文搞懂】—带霍尔编码器的直流有刷减速电机
本文详细介绍了直流有刷电机的工作原理,为什么要有减速电机,减速比是什么,什么是编码器,编码器的作用。针对霍尔编码器介绍了一些相关概念以及检测电机转速和转向的原理。最后,给出了详细的测速程序设计思路和代码实现。
605 0
|
机器学习/深度学习 传感器 算法
【地震】基于有限差分 (FDTD) 模拟地震超材料(晶体)时域分析附matlab代码
【地震】基于有限差分 (FDTD) 模拟地震超材料(晶体)时域分析附matlab代码
第二章:晶体二极管及其应用
第二章:晶体二极管及其应用
43 0