JVM 调优一个月,性能提升了 400 倍!

简介: 通过这一个多月的努力,将 FullGC 从 40 次/天优化到近 10 天才触发一次,而且 YoungGC 的时间也减少了一半以上,这么大的优化,有必要记录一下中间的调优过程。

对于JVM垃圾回收,之前一直都是处于理论阶段,就知道新生代,老年代的晋升关系,这些知识仅够应付面试使用的。前一段时间,线上服务器的FullGC非常频繁,平均一天40多次,而且隔几天就有服务器自动重启了,这表明的服务器的状态已经非常不正常了,得到这么好的机会,当然要主动请求进行调优了。未调优前的服务器GC数据,FullGC非常频繁。

image.png

首先服务器的配置非常一般(2核4G),总共4台服务器集群。每台服务器的FullGC次数和时间基本差不多。其中JVM几个核心的启动参数为:

-Xms1000M -Xmx1800M -Xmn350M -Xss300K -XX:+DisableExplicitGC -XX:SurvivorRatio=4 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSParallelRemarkEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC

-Xmx1800M:设置JVM最大可用内存为1800M。-Xms1000m:设置JVM初始化内存为1000m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。-Xmn350M:设置年轻代大小为350M。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。


此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。-Xss300K:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。


第一次优化

一看参数,马上觉得新生代为什么这么小,这么小的话怎么提高吞吐量,而且会导致YoungGC的频繁触发,如上如的新生代收集就耗时830s。初始化堆内存没有和最大堆内存一致,查阅了各种资料都是推荐这两个值设置一样的,可以防止在每次GC后进行内存重新分配。基于前面的知识,于是进行了第一次的线上调优:提升新生代大小,将初始化堆内存设置为最大内存


-Xmn350M -> -Xmn800M -XX:SurvivorRatio=4 -> -XX:SurvivorRatio=8 -Xms1000m ->-Xms1800m


将SurvivorRatio修改为8的本意是想让垃圾在新生代时尽可能的多被回收掉。就这样将配置部署到线上两台服务器(prod,prod2另外两台不变方便对比)上后,运行了5天后,观察GC结果,YoungGC减少了一半以上的次数,时间减少了400s,但是FullGC的平均次数增加了41次。YoungGC基本符合预期设想,但是这个FullGC就完全不行了。

image.png

就这样第一次优化宣告失败。

第二次优化

在优化的过程中,我们的主管发现了有个对象T在内存中有一万多个实例,而且这些实例占据了将近20M的内存。于是根据这个bean对象的使用,在项目中找到了原因:匿名内部类引用导致的,伪代码如下:

public void doSmthing(T t){
 redis.addListener(new Listener(){
  public void onTimeout(){
   if(t.success()){
    //执行操作
   }
  }
 });
}

由于listener在回调后不会进行释放,而且回调是个超时的操作,当某个事件超过了设定的时间(1分钟)后才会进行回调,这样就导致了T这个对象始终无法回收,所以内存中会存在这么多对象实例。通过上述的例子发现了存在内存泄漏后,首先对程序中的error log文件进行排查,首先先解决掉所有的error事件。然后再次发布后,GC操作还是基本不变,虽然解决了一点内存泄漏问题,但是可以说明没有解决根本原因,服务器还是继续莫名的重启。


内存泄漏调查

经过了第一次的调优后发现内存泄漏的问题,于是大家都开始将进行内存泄漏的调查,首先排查代码,不过这种效率是蛮低的,基本没发现问题。于是在线上不是很繁忙的时候继续进行dump内存,终于抓到了一个大对象。

image.png

image.png

image.png

这个对象竟然有4W多个,而且都是清一色的ByteArrowRow对象,可以确认这些数据是数据库查询或者插入时产生的了。于是又进行一轮代码分析,在代码分析的过程中,通过运维的同事发现了在一天的某个时候入口流量翻了好几倍,竟然高达83MB/s,经过一番确认,目前完全没有这么大的业务量,而且也不存在文件上传的功能。咨询了阿里云客服也说明完全是正常的流量,可以排除攻击的可能。

image.png

就在我还在调查入口流量的问题时,另外一个同事找到了根本的原因,原来是在某个条件下,会查询表中所有未处理的指定数据,但是由于查询的时候where条件中少加了模块这个条件,导致查询出的数量达40多万条,而且通过log查看当时的请求和数据,可以判断这个逻辑确实是已经执行了的,dump出的内存中只有4W多个对象,这个是因为dump时候刚好查询出了这么多个,剩下的还在传输中导致的。而且这也能非常好的解释了为什么服务器会自动重启的原因。


解决了这个问题后,线上服务器运行完全正常了,使用未调优前的参数,运行了3天左右FullGC只有5次:

image.png

第三次调优

内存泄漏的问题已经解决了,剩下的就可以继续调优了,经过查看GC log,发现前三次GullGC时,老年代占据的内存还不足30%,却发生了FullGC。于是进行各种资料的调查,在:https://blog.csdn.net/zjwstz/article/details/77478054 博客中非常清晰明了的说明metaspace导致FullGC的情况,服务器默认的metaspace是21M,在GC log中看到了最大的时候metaspace占据了200M左右,于是进行如下调优,以下分别为prod1和prod2的修改参数,prod3,prod4保持不变


-Xmn350M -> -Xmn800M -Xms1000M ->1800M -XX:MetaspaceSize=200M -XX:CMSInitiatingOccupancyFraction=75



-Xmn350M -> -Xmn600M -Xms1000M ->1800M -XX:MetaspaceSize=200M -XX:CMSInitiatingOccupancyFraction=75


prod1和2只是新生代大小不一样而已,其他的都一致。到线上运行了10天左右,进行对比:prod1:

image.png

prod2:

image.png

prod3:

image.png

prod4:

image.png

对比来说,1,2两台服务器FullGC远远低于3,4两台,而且1,2两台服务器的YounGC对比3,4也减少了一半左右,而且第一台服务器效率更为明显,除了YoungGC次数减少,而且吞吐量比多运行了一天的3,4两台的都要多(通过线程启动数量),说明prod1的吞吐量提升尤为明显。通过GC的次数和GC的时间,本次优化宣告成功,且prod1的配置更优,极大提升了服务器的吞吐量和降低了GC一半以上的时间。


prod1中的唯一一次FullGC:

image.png

通过GC log上也没看出原因,老年代在cms remark的时候只占据了660M左右,这个应该还不到触发FullGC的条件,而且通过前几次的YoungGC调查,也排除了晋升了大内存对象的可能,通过metaspace的大小,也没有达到GC的条件。这个还需要继续调查,有知道的欢迎指出下,这里先行谢过了。


总结

通过这一个多月的调优总结出以下几点:


FullGC一天超过一次肯定就不正常了

发现FullGC频繁的时候优先调查内存泄漏问题

内存泄漏解决后,jvm可以调优的空间就比较少了,作为学习还可以,否则不要投入太多的时间

如果发现CPU持续偏高,排除代码问题后可以找运维咨询下阿里云客服,这次调查过程中就发现CPU 100%是由于服务器问题导致的,进行服务器迁移后就正常了。

数据查询的时候也是算作服务器的入口流量的,如果访问业务没有这么大量,而且没有攻击的问题的话可以往数据库方面调查

有必要时常关注服务器的GC,可以及早发现问题

以上是最近一个多月JVM调优的过程与总结,如有错误之处欢迎指正。


原文链接:https://blog.csdn.net/cml_blog/article/details/81057966


版权声明:本文为CSDN博主「cmlbeliever」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

目录
相关文章
|
21天前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
28天前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
31 1
|
1月前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
1月前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
54 1
|
1月前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
1月前
|
监控 Java 编译器
Java虚拟机调优实战指南####
本文深入探讨了Java虚拟机(JVM)的调优策略,旨在帮助开发者和系统管理员通过具体、实用的技巧提升Java应用的性能与稳定性。不同于传统摘要的概括性描述,本文摘要将直接列出五大核心调优要点,为读者提供快速预览: 1. **初始堆内存设置**:合理配置-Xms和-Xmx参数,避免频繁的内存分配与回收。 2. **垃圾收集器选择**:根据应用特性选择合适的GC策略,如G1 GC、ZGC等。 3. **线程优化**:调整线程栈大小及并发线程数,平衡资源利用率与响应速度。 4. **JIT编译器优化**:利用-XX:CompileThreshold等参数优化即时编译性能。 5. **监控与诊断工
|
1月前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
2月前
|
Arthas 监控 数据可视化
JVM进阶调优系列(7)JVM调优监控必备命令、工具集合|实用干货
本文介绍了JVM调优监控命令及其应用,包括JDK自带工具如jps、jinfo、jstat、jstack、jmap、jhat等,以及第三方工具如Arthas、GCeasy、MAT、GCViewer等。通过这些工具,可以有效监控和优化JVM性能,解决内存泄漏、线程死锁等问题,提高系统稳定性。文章还提供了详细的命令示例和应用场景,帮助读者更好地理解和使用这些工具。
|
2月前
|
监控 架构师 Java
JVM进阶调优系列(6)一文详解JVM参数与大厂实战调优模板推荐
本文详述了JVM参数的分类及使用方法,包括标准参数、非标准参数和不稳定参数的定义及其应用场景。特别介绍了JVM调优中的关键参数,如堆内存、垃圾回收器和GC日志等配置,并提供了大厂生产环境中常用的调优模板,帮助开发者优化Java应用程序的性能。
|
2月前
|
Java
JVM进阶调优系列(5)CMS回收器通俗演义一文讲透FullGC
本文介绍了JVM中CMS垃圾回收器对Full GC的优化,包括Stop the world的影响、Full GC触发条件、GC过程的四个阶段(初始标记、并发标记、重新标记、并发清理)及并发清理期间的Concurrent mode failure处理,并简述了GC roots的概念及其在GC中的作用。