MySQL 百万级数据,怎么做分页查询?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 方法1: 直接使用数据库提供的SQL语句

方法1: 直接使用数据库提供的SQL语句


语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N

适应场景: 适用于数据量较少的情况(元组百/千级)

原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃.

方法2: 建立主键或唯一索引, 利用索引(假设每页10条)


语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) LIMIT M

适应场景: 适用于数据量多的情况(元组数上万)

原因: 索引扫描,速度会很快. 有朋友提出: 因为数据查询出来并不是按照pk_id排序的,所以会有漏掉数据的情况,只能方法3

方法3: 基于索引再排序


语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) ORDER BY id_pk ASC LIMIT M

适应场景: 适用于数据量多的情况(元组数上万). 最好ORDER BY后的列对象是主键或唯一所以,使得ORDERBY操作能利用索引被消除但结果集是稳定的(稳定的含义,参见方法1)

原因: 索引扫描,速度会很快. 但MySQL的排序操作,只有ASC没有DESC(DESC是假的,未来会做真正的DESC,期待...).

方法4: 基于索引使用prepare


第一个问号表示pageNum,第二个?表示每页元组数


语句样式: MySQL中,可用如下方法: PREPARE stmt_name FROM SELECT * FROM 表名称 WHERE id_pk > (?* ?) ORDER BY id_pk ASC LIMIT M

适应场景: 大数据量

原因: 索引扫描,速度会很快. prepare语句又比一般的查询语句快一点。

方法5: 利用MySQL支持ORDER操作可以利用索引快速定位部分元组,避免全表扫描


比如: 读第1000到1019行元组(pk是主键/唯一键).


SELECT * FROM your_table WHERE pk>=1000 ORDER BY pk ASC LIMIT 0,20

方法6: 利用"子查询/连接+索引"快速定位元组的位置,然后再读取元组.


比如(id是主键/唯一键,蓝色字体时变量)


利用子查询示例:


SELECT * FROM your_table WHERE id <=

(SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize ORDER BY id desc

LIMIT $pagesize

1

2

利用连接示例:


SELECT * FROM your_table AS t1

JOIN (SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize AS t2

WHERE t1.id <= t2.id ORDER BY t1.id desc LIMIT $pagesize;

1

2

mysql大数据量使用limit分页,随着页码的增大,查询效率越低下。


测试实验


1. 直接用limit start, count分页语句, 也是我程序中用的方法:


select * from product limit start, count

当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条)。


如下:


select * from product limit 10, 20   0.016秒

select * from product limit 100, 20   0.016秒

select * from product limit 1000, 20   0.047秒

select * from product limit 10000, 20   0.094秒

1

2

3

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)


select * from product limit 400000, 20   3.229秒

再看我们取最后一页记录的时间


select * from product limit 866613, 20   37.44秒

像这种分页最大的页码页显然这种时间是无法忍受的。


从中我们也能总结出两件事情:


limit语句的查询时间与起始记录的位置成正比

mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

2. 对limit分页问题的性能优化方法


利用表的覆盖索引来加速分页查询


我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。


因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。


在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何。


这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:


select id from product limit 866613, 20 0.2秒

相对于查询了所有列的37.44秒,提升了大概100多倍的速度


那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:


SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20

查询时间为0.2秒!


另一种写法


SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id

查询时间也很短!


3. 复合索引优化方法


MySql 性能到底能有多高?MySql 这个数据库绝对是适合dba级的高手去玩的,一般做一点1万篇新闻的小型系统怎么写都可以,用xx框架可以实现快速开发。可是数据量到了10万,百万至千万,他的性能还能那么高吗?一点小小的失误,可能造成整个系统的改写,甚至更本系统无法正常运行!好了,不那么多废话了。


用事实说话,看例子:


数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。最后collect 为 10万条记录,数据库表占用硬1.6G。


OK ,看下面这条sql语句:


select id,title from collect limit 1000,10;

很快;基本上0.01秒就OK,再看下面的


select id,title from collect limit 90000,10;

从9万条开始分页,结果?


8-9秒完成,my god 哪出问题了?其实要优化这条数据,网上找得到答案。看下面一条语句:


select id from collect order by id limit 90000,10;

很快,0.04秒就OK。为什么?因为用了id主键做索引当然快。网上的改法是:


select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10;

这就是用了id做索引的结果。可是问题复杂那么一点点,就完了。看下面的语句


select id from collect where vtype=1 order by id limit 90000,10; 很慢,用了8-9秒!


到了这里我相信很多人会和我一样,有崩溃感觉!vtype 做了索引了啊?怎么会慢呢?vtype做了索引是不错,你直接


select id from collect where vtype=1 limit 1000,10;

是很快的,基本上0.05秒,可是提高90倍,从9万开始,那就是0.05*90=4.5秒的速度了。和测试结果8-9秒到了一个数量级。


从这里开始有人提出了分表的思路,这个和dis #cuz 论坛是一样的思路。思路如下:


建一个索引表:t (id,title,vtype) 并设置成定长,然后做分页,分页出结果再到 collect 里面去找info 。是否可行呢?实验下就知道了。


10万条记录到 t(id,title,vtype) 里,数据表大小20M左右。用


select id from t where vtype=1 order by id limit 90000,10;

很快了。基本上0.1-0.2秒可以跑完。为什么会这样呢?我猜想是因为collect 数据太多,所以分页要跑很长的路。limit 完全和数据表的大小有关的。其实这样做还是全表扫描,只是因为数据量小,只有10万才快。OK, 来个疯狂的实验,加到100万条,测试性能。加了10倍的数据,马上t表就到了200多M,而且是定长。还是刚才的查询语句,时间是0.1-0.2秒完成!分表性能没问题?


错!因为我们的limit还是9万,所以快。给个大的,90万开始


select id from t where vtype=1 order by id limit 900000,10;

看看结果,时间是1-2秒!why ?


分表了时间还是这么长,非常之郁闷!有人说定长会提高limit的性能,开始我也以为,因为一条记录的长度是固定的,mysql 应该可以算出90万的位置才对啊?可是我们高估了mysql 的智能,他不是商务数据库,事实证明定长和非定长对limit影响不大?怪不得有人说discuz到了100万条记录就会很慢,我相信这是真的,这个和数据库设计有关!


难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限?


答案是:NO 为什么突破不了100万是因为不会设计mysql造成的。下面介绍非分表法,来个疯狂的测试!一张表搞定100万记录,并且10G 数据库,如何快速分页!


好了,我们的测试又回到 collect表,开始测试结论是:


30万数据,用分表法可行,超过30万他的速度会慢道你无法忍受!当然如果用分表+我这种方法,那是绝对完美的。但是用了我这种方法后,不用分表也可以完美解决!


答案就是:复合索引!有一次设计mysql索引的时候,无意中发现索引名字可以任取,可以选择几个字段进来,这有什么用呢?


开始的


select id from collect order by id limit 90000,10;

这么快就是因为走了索引,可是如果加了where 就不走索引了。抱着试试看的想法加了 search(vtype,id) 这样的索引。


然后测试


select id from collect where vtype=1 limit 90000,10;

非常快!0.04秒完成!


再测试:


select id ,title from collect where vtype=1 limit 90000,10;

非常遗憾,8-9秒,没走search索引!


再测试:search(id,vtype),还是select id 这个语句,也非常遗憾,0.5秒。


综上:如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键!


完美解决了分页问题了。可以快速返回id就有希望优化limit , 按这样的逻辑,百万级的limit 应该在0.0x秒就可以分完。看来mysql 语句的优化和索引时非常重要的!

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
5月前
|
存储 数据采集 JavaScript
深入理解数仓开发(一)数据技术篇之日志采集
深入理解数仓开发(一)数据技术篇之日志采集
|
5月前
|
消息中间件 关系型数据库 Kafka
深入理解数仓开发(二)数据技术篇之数据同步
深入理解数仓开发(二)数据技术篇之数据同步
|
5月前
|
分布式计算 DataWorks 关系型数据库
实时数仓 Hologres产品使用合集之如何将MySQL数据初始化到分区表中
实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线
|
5月前
|
分布式计算 关系型数据库 数据挖掘
实时数仓 Hologres产品使用合集之误删Hologres一张表的数据,可以支持闪回功能吗
实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线
|
3月前
|
DataWorks 负载均衡 Serverless
实时数仓 Hologres产品使用合集之如何导入大量数据
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3月前
|
SQL 消息中间件 OLAP
OneSQL OLAP实践问题之实时数仓中数据的分层如何解决
OneSQL OLAP实践问题之实时数仓中数据的分层如何解决
52 1
|
3月前
|
SQL DataWorks 数据库连接
实时数仓 Hologres操作报错合集之如何将物理表数据写入临时表
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3月前
|
SQL 分布式计算 关系型数据库
实时数仓 Hologres操作报错合集之指定主键更新模式报错主键数据重复,该如何处理
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3月前
|
SQL 分布式计算 MaxCompute
实时数仓 Hologres产品使用合集之如何在插入数据后获取自增的id值
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
实时数仓 Hologres产品使用合集之如何在插入数据后获取自增的id值
|
3月前
|
存储 搜索推荐 关系型数据库
实时数仓 Hologres产品使用合集之如何在新增列的时候将历史数据也补上默认值
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。