系列笔记 | 深度学习连载(5):优化技巧(下)

简介: 系列笔记 | 深度学习连载(5):优化技巧(下)

深度学习中我们总结出 5 大技巧:


image.png


本节继续从第三个开始讲起。


3. Early stopping and Regularization


本节我们一起探讨 Early stopping and Regularization,这两个技巧不是深度学习特有的方法,是机器学习通用的方法。


image.png


Early stopping


在训练过程中,往往会得出训练的最后的结果还可能不如以前的,原因很有可能出现overfitting。 我们需要提前踩刹车,得出更好的效果。


image.png


Regularizaton


当我们努力降低Loss函数的数值的时候,我们会发现,我们找到的参数集weights,不仅仅要让Loss变小,而且weights 自身也需要接近于0,这样我们的结果会更加理想。


image.png


L1 正则化:


image.png


新的Loss函数将会被最小化:


image.png


L2正则化:


image.png


新的Loss函数将会被最小化:


image.png



到这里,很多同学会疑问,为什么weights小了,结果就很更好,我在这里举例说明:6岁的时候和14岁的时候,大脑的神经元密度明显降低,说明一些无效的神经元是阻碍大脑进步的。


image.png


4. Dropout


Dropout 在2012年imagenet 比赛中大放异彩,是当时CNN模型夺冠的功勋环节之一。


那什么是Dropout 我们先直观的理解:


练武功的时候,训练的时候脚上绑上重物


image.png


等到练成下山的时候:


image.png


我们从几个方面来解释Dropout


基础定义


当训练的时候,每一个神经元都有p%的可能“靠边站”


image.png


当测试的时候,所有的神经元齐心协力,共同努力:


image.png


Dropout是一种Ensemble学习


Ensemble 学习我们在机器学习专栏中一起讨论过,链接是集成学习。每次训练的时候的网络结构都是不一样的,是一个thinner network:


image.png


其实在训练的时候训练了很多thinner network:


image.png


测试的时候,取各个网络的平均值


image.png


所以在深度学习中,我们的整个训练测试方法如下:


image.png

相关文章
|
21天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
124 59
|
2月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
110 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
64 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
机器学习/深度学习 数据采集 算法
深度学习之路径优化与车辆调度
基于深度学习的路径优化与车辆调度技术在交通管理、物流配送、公共交通、共享出行等领域具有重要应用价值。这些技术利用深度学习模型处理复杂的交通数据、实时信息以及用户需求,旨在提高运输效率、降低成本、减少拥堵并提升服务质量。
75 0
|
18天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
36 2
|
20天前
|
机器学习/深度学习 算法
深度学习中的模型优化策略
【10月更文挑战第35天】在深度学习的海洋中,模型优化是那把能够引领我们抵达知识彼岸的桨。本文将从梯度下降法出发,逐步深入到动量、自适应学习率等高级技巧,最后通过一个实际代码案例,展示如何应用这些策略以提升模型性能。
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
190 1
深度学习环境搭建笔记(一):detectron2安装过程
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
206 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略
|
2月前
|
机器学习/深度学习 自然语言处理 并行计算
深度学习笔记(十四):Transormer知识总结
关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。
62 1