系列笔记 | 深度学习连载(4):优化技巧(上)

简介: 系列笔记 | 深度学习连载(4):优化技巧(上)

深度学习中我们总结出 5 大技巧:


image.png


1. Adaptive Learning Rate


我们先从Adaptive Learning Rate 谈起,我Gradient Decent 中我们已经讨论了:

AdaGrad :


image.png


紧着AdaGrad的步伐,我们进一步看:


RMSProp


神经网络训练的时候,Error Surface 很有可能非常复杂


image.png


RMSProp其实和AdaGrad 是一样的思路,但是具体求分母的时候,它考虑了历史gradient和新的g的权重a 。


image.pngimage.gif


Momentum


如何找到最优的网络参数呢?


optimize loss 的时候,很有可能就会遇到如下三大问题:


  • 慢 very slow
  • 局部最优 local minimal
  • 鞍点 saddle point


我们可以考虑在物理世界的场景进行映射:小球从山上滑落,在局部最低的时候,他的动量让它冲出局部。


image.png



我们复习一下梯度下降:Gradient的方向和Movement 的方向相反


image.png


当我们考虑运动的动量后:


  • 运动不在是基于梯度,而是基于以前的运动
  • Movement not just based on gradient, but previous movement.


image.png


其中 movement = laststep of movement - present gradient


image.png


Momentum 虽然不能保证走出“困境”,但是这是一个巨大的进步


image.png


Adam 算法


Adam 算法是结合 RMSProp 和 Momentum, 来寻找最优解。看起来比较复杂,

实际上懂 RMSProp 和 Momentum后,也就很快理解了。


image.png


2. New activation function


深度学习中我们总结出5大技巧:本节我们就从新的激活函数Relu谈起。


image.png


新的激活函数 new activation function


我们知道,激活函数在基于神经网络的深度学习中将线性变换,转换为非线性变换。是神经网络能够学到东西的重要一环。常用的激活函数有sigma, tanh 等。


从辛顿大神在2012年imagenet 中的CNN网络中引入relu,这个神奇的看上去是线性的激活函数进入我们的视野,以后扮演者非常重要的作用。


image.png


那为什么要引入relu,sigma、tanh 函数有什么缺点呢?


最主要的问题在于deep learning 无法真正deep:


image.png


如图所示,训练上8层之后,正确率急速下降。 这是为什么呢?


主要原因在于梯度消失Vanishing Gradient Problem


如图所示:传统的激活函数,数据变化后,输出的变化比输入小,而且根据ChainRule, 层数越深,梯度值相乘的结果越小,小到接近于0的时候,就无法学习了。


image.png


所以,我们引入Relu,他的特点是:


1. 计算快速(导数是1)

2. 生物学原理(貌似是大脑回路,不太了解)

3. linear piece 可以模拟任何函数(在以后的深度学习理论会讲)

4. 重点是:可以解决梯度消失的问题


image.png


Relu 可以简化神经网络:


image.png

image.png


虽然Relu看起来很好(有严格数学证明,以后会深入讲),但是在小于0的时候导数为0,对于参数学习是不利的:所以我们引入Relu的变种:leaky Relu, Parametirc Relu, 以后还会谈到 Selu

image.png

相关文章
|
6天前
|
机器学习/深度学习 算法 调度
深度学习|改进两阶段鲁棒优化算法i-ccg
深度学习|改进两阶段鲁棒优化算法i-ccg
|
14天前
|
机器学习/深度学习 数据处理 网络架构
基于深度学习的图像识别优化策略
【4月更文挑战第30天】 在当前的计算机视觉领域,深度学习已成为推动图像识别技术革新的核心动力。本文旨在探讨并提出一系列优化策略,以增强现有深度神经网络模型在处理复杂图像数据时的性能和效率。通过分析网络架构、训练过程和数据处理流程,我们提出了改进的模型正则化方法、高效的训练技巧以及针对特定问题的适应性调整。这些策略不仅在理论上具有创新性,而且在实践中已被证明能够显著提高模型的准确率和泛化能力,为图像识别领域的研究与应用提供了新的视角和技术路径。
|
2天前
|
机器学习/深度学习 人工智能 算法
构建高效AI系统:深度学习优化技术解析
【5月更文挑战第12天】 随着人工智能技术的飞速发展,深度学习已成为推动创新的核心动力。本文将深入探讨在构建高效AI系统中,如何通过优化算法、调整网络结构及使用新型硬件资源等手段显著提升模型性能。我们将剖析先进的优化策略,如自适应学习率调整、梯度累积技巧以及正则化方法,并讨论其对模型训练稳定性和效率的影响。文中不仅提供理论分析,还结合实例说明如何在实际项目中应用这些优化技术。
|
6天前
|
机器学习/深度学习 边缘计算 算法
基于深度学习的图像识别优化策略研究
【5月更文挑战第8天】 本研究旨在探索提高深度神经网络在图像识别任务中性能的有效策略。通过分析现有模型的局限性,本文提出了一系列优化技术,包括数据增强、网络结构调整和损失函数改进。实验结果表明,这些策略显著提升了模型的准确率和泛化能力,尤其在处理高复杂度图像时表现突出。此外,针对计算资源消耗问题,我们还探讨了模型压缩和加速方法,以期实现高效率的实时图像识别应用。
|
7天前
|
机器学习/深度学习 边缘计算 算法
基于深度学习的图像识别优化策略研究
【5月更文挑战第7天】 在计算机视觉领域,图像识别作为核心任务之一,其性能的提升一直是研究的热点。随着深度学习技术的不断发展,卷积神经网络(CNN)已成为图像识别的主要工具。然而,模型复杂度和计算资源的大量需求限制了其在实际应用中的推广。本文围绕减少模型参数、提高运算效率和保持识别准确率等方面展开,提出了一种结合深度可分离卷积与注意力机制的图像识别优化策略。通过实验验证,该策略在多个标准数据集上取得了与传统卷积网络相媲美的结果,同时显著降低了参数数量和计算成本。
29 4
|
8天前
|
机器学习/深度学习 人工智能 开发框架
构建未来:基于深度学习的图像识别优化策略
【5月更文挑战第6天】随着人工智能技术的飞速发展,深度学习在图像识别领域已经取得了显著的成就。然而,为了进一步提升系统的识别效率和准确性,本文提出了一种结合最新神经网络架构与数据增强技术的图像识别优化策略。通过引入自适应学习率调整机制和混合精度训练方法,该策略旨在降低模型训练过程中的时间成本,同时提高模型在复杂环境下的泛化能力。
|
8天前
|
机器学习/深度学习 监控 算法
利用深度学习优化图像识别准确性的探索
【5月更文挑战第6天】 在数字图像处理领域,随着数据量的激增和算法复杂度的提升,传统图像识别技术面临巨大挑战。本文通过构建一个基于深度卷积神经网络(CNN)的模型,探讨了如何提高图像识别的准确性。我们详细分析了网络结构、激活函数和优化器的选择对模型性能的影响,并通过实验验证了所提出方法的有效性。结果表明,采用适当的数据增强技术和调整网络参数,可以显著提升模型在复杂数据集上的识别精度。
|
9天前
|
机器学习/深度学习 边缘计算 计算机视觉
基于深度学习的图像识别优化技术研究
【5月更文挑战第5天】 在当前的计算机视觉领域,图像识别技术已取得显著进展,尤其是深度学习方法的广泛应用。然而,随着数据量的日益增加和模型复杂度的提升,如何提高图像识别的效率与准确性成为新的挑战。本文提出了一种基于改进卷积神经网络(CNN)的图像识别优化技术,旨在减少模型参数量、加速推理过程,并保持甚至提升识别精度。通过引入深度可分离卷积、注意力机制以及量化剪枝策略,该技术在多个标准数据集上显示出了卓越的性能。
|
11天前
|
机器学习/深度学习 算法 大数据
利用深度学习优化图像识别处理流程
【5月更文挑战第3天】 在当前的计算机视觉领域,图像识别的准确性与处理速度是衡量系统性能的重要指标。随着人工智能技术的飞速发展,深度学习模型尤其是卷积神经网络(CNN)在图像识别任务中取得了显著成果。本文旨在探讨如何通过优化深度学习模型的结构和参数,以及采用高效的算法来提高图像识别的处理效率和准确率。我们将介绍几种有效的技术手段,包括网络结构简化、权重共享、多尺度训练等,并通过实验验证这些方法的有效性。最终目的是为读者呈现一种平衡计算成本与识别性能的优化策略,推动深度学习在实际应用中的高效部署。
|
11天前
|
机器学习/深度学习 数据采集 人工智能
利用深度学习优化图像识别处理流程
【5月更文挑战第3天】 在现代技术环境中,图像识别作为人工智能的一个关键应用领域,其发展速度和准确性要求不断提高。本文将探讨利用深度学习技术优化图像识别处理流程的方法,包括数据预处理、模型选择、训练策略及最终的测试与部署。通过分析现有文献和最新研究成果,我们提出了一套改进的卷积神经网络(CNN)架构,该架构能够有效提升图像识别的准确率和处理速度。此外,文章还讨论了模型过拟合、数据增强以及迁移学习等关键技术的应用,并展示了这些技术如何帮助构建一个更为健壮和高效的图像识别系统。
22 5