LabVIEW图像特征与机器视觉概念(理论篇—4)

简介: LabVIEW图像特征与机器视觉概念(理论篇—4)

图像的特征是指图像的原始特性或属性,其中部分属于自然特征,如像素灰度、边缘和轮廓、纹理及色彩等。有些则是需要通过计算或变换才能得到的特征,如直方图、频谱和不变矩等。


为了能减少计算量并提高系统的实时性,几乎所有机器视觉系统对目标的识别、分类及检测都基于从图像中提取的各种特征来进行。


将属于特征的像素从图像中分离出来的过程称为图像的特征提取,从各种图像特征中选出可高效解决待处理问题的特征的过程则称为特征选择。特征提取和特征选择的结果是否有效,直接决定着机器视觉系统进行机器决策的成败。


对解决实际问题来说,一个好的特征应与其他特征之间应有明显的差异,且对同类图像来说,其值应保持一致可靠,并具有代表性和独立性。总之,特征提取和选择过程应尽可能减少整个识别系统的处理时间,并提高系统识别目标的准确率。


机器视觉系统开发过程中常见的特征包括像素灰度、边缘、轮廓和形状、纹理、角点、色彩以及各种与图像颗粒相关的属性等,如下图所示:

image.png

基于以上常见的图像特征,可以实现诸如尺寸测量(Dimension Measurement)目标检测(Detection)、缺陷检查(Fault lnspection)、目标对准(Object Alignment)、分类计数(Sorting & Counting)以及目标追踪(Object Tracking)等机器视觉应用。


其中检测是指对目标的存在性进行判断,如检测电路板上的某一电阻或电容是否被安装等。检测既可基于尺寸距离等测量,也可基于对其他更为抽象的图像特征的计算。缺陷检测通常是按照预先设置的特征阈值范围判断被测量的特征是否在这一达标范围内。目标对准可对视场中目标相对标准位置的平移和旋转进行纠正。分类计数则通过特征模式匹配等对目标进行分类并统计数量。而目标追踪则可以根据事先选择的特征跟踪视场中目标的位置。



相关文章
|
机器学习/深度学习 搜索推荐 算法
计算机视觉教程6-1:图解双目视觉系统与立体校正原理
计算机视觉教程6-1:图解双目视觉系统与立体校正原理
830 0
计算机视觉教程6-1:图解双目视觉系统与立体校正原理
【故障诊断】用于轴承故障诊断的性能增强时变形态滤波方法及用于轴承断层特征提取的增强数学形态算子研究(Matlab代码实现)
【故障诊断】用于轴承故障诊断的性能增强时变形态滤波方法及用于轴承断层特征提取的增强数学形态算子研究(Matlab代码实现)
167 0
|
6月前
|
机器学习/深度学习 人工智能 监控
机器视觉:原理、应用与实现
机器视觉:原理、应用与实现
132 1
|
传感器 机器学习/深度学习 算法
【姿态解算】基于扩展卡尔曼滤波九轴传感器姿态解算研究附代码
【姿态解算】基于扩展卡尔曼滤波九轴传感器姿态解算研究附代码
|
机器学习/深度学习 算法 决策智能
计算机视觉实战(十六)光流估计 (附完整代码)
计算机视觉实战(十六)光流估计 (附完整代码)
170 0
|
机器学习/深度学习
神经网络核心原理关键点纪要
神经网络核心原理关键点纪要
79 0
|
机器学习/深度学习 存储 算法
大脑带来的启发:深度神经网络优化中突触整合原理介绍
大脑带来的启发:深度神经网络优化中突触整合原理介绍
230 0
|
传感器 机器学习/深度学习 数据采集
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(上)
论文调查的主要目的是介绍VSLAM系统的最新进展,并讨论现有的挑战和未来趋势。论文对在VSLAM领域发表的45篇有影响力的论文进行了深入的调查,并根据不同的特点对这些方法进行了分类,包括novelty domain、目标、采用的算法和语义水平。最后论文讨论了当前的趋势和未来的方向,有助于研究人员进行研究。
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(上)
|
机器学习/深度学习 传感器 存储
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(下)
论文调查的主要目的是介绍VSLAM系统的最新进展,并讨论现有的挑战和未来趋势。论文对在VSLAM领域发表的45篇有影响力的论文进行了深入的调查,并根据不同的特点对这些方法进行了分类,包括novelty domain、目标、采用的算法和语义水平。最后论文讨论了当前的趋势和未来的方向,有助于研究人员进行研究。
2022最新!视觉SLAM综述(多传感器/姿态估计/动态环境/视觉里程计)(下)
|
机器学习/深度学习 编解码 人工智能
90+目标跟踪算法&九大benchmark!基于判别滤波器和孪生网络的视觉目标跟踪:综述与展望(上)
视觉目标跟踪(VOT)是计算机视觉中的一个基本开放问题,任务是估计图像序列中目标的轨迹和状态。VOT具有广泛的应用,包括自动驾驶、机器人、智能视频监控、运动分析和医学成像。给定任意目标对象的初始状态,VOT中的主要挑战是学习在后续帧中搜索目标对象时使用的外观模型。近年来,由于引入了多种跟踪基准,如TrackingNet、VOT2018和GOT-10K,VOT受到了极大的关注。尽管最近取得了进展,VOT仍然是一个开放的研究问题,可能比以往任何时候都更加活跃。
90+目标跟踪算法&九大benchmark!基于判别滤波器和孪生网络的视觉目标跟踪:综述与展望(上)
下一篇
无影云桌面