国产芯片WiFi物联网智能插座—电耗采集功能设计

简介: 国产芯片WiFi物联网智能插座—电耗采集功能设计

目录

1、硬件设计


2、软件设计


WiFi物联网智能插座的电耗采集依托于合力为的HLW8110计量芯片实现,选取它的主要原因是精度不错,价格美丽,并且可以通过串口驱动,使用便捷。

image.png



1、硬件设计

HLW8110是一款高精度的电能计量 IC,它采用 CMOS 制造工艺,主要用于单相计量应用。它能够测量线电压和电流,并能计算有功功率,视在功率和功率因素。该器件内部集成了二个∑-Δ型 ADC 和一个高精度的电能计量内核。输入通道支持灵活的 PGA 设置,因此 HLW8110 适合与不同类型的传感器使用,如电流互感器(CT)和低阻值分流器。


HLW8110 电能计量 IC 采用 3.3V 或 5.0V 电源供电,内置 3.579M 振荡器,可以通过 UART 口进行数据通讯,波特率为 9600bps。


image.png


HLW8110的典型电路,外围电路简单,外围器件非常少,单路通道可用于检测负载设备的功率、电压、电流和用电量,通过 UART 或接口传输数据至 MCU,HLW8110 内部可以设置功率过载、电压过载和电流过载阀值,通过内部寄存器可以查询,并可以检测电压过零点。


image.png


官方测试,使用采样电阻或者互感器的理论数据误差如下所示:


image.png


在使用之前先简单设计一块Demo板进行调测,实物模块如下所示:


image.png


原理图、PCB如下所示:


image.png




2、软件设计

由于代码量较多,部分配置代码不再赘述,仅仅展示核心算法代码。


读取通道电流,实现代码如下所示:


void Read_HLW8110_IA(void)
{ 
  float a;
  Uart_Read_HLW8110_Reg(REG_RMSIA_ADDR,3);
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  U32_RMSIA_RegData = (unsigned long)(u8_RxBuf[0]<<16) + (unsigned long)(u8_RxBuf[1]<<8) + (unsigned long)(u8_RxBuf[2]); 
  printf("A通道电流寄存器:%lx\n " ,U32_RMSIA_RegData);
  }
  else
  {
  printf("A通道电流寄存器读取出错\r\n");
  B_Read_Error = 1;
  }
  //A通道电流PGA = 16,电压通道PGA = 1;电流采样电阻1mR,电压采样电阻1M
  //计算公式,U16_AC_I = (U32_RMSIA_RegData * U16_RMSIAC_RegData)/(电流系数* 2^23)
  if ((U32_RMSIA_RegData & 0x800000) == 0x800000)
  {
    F_AC_I = 0;
  }
  else
  {
  a = (float)U32_RMSIA_RegData;
  a = a * U16_RMSIAC_RegData;
  a  = a/0x800000;                     //电流计算出来的浮点数单位是mA,比如5003.12 
  a = a/1;          // 1 = 电流系数
  a = a/1000;              //a= 5003ma,a/1000 = 5.003A,单位转换成A
  a = a * D_CAL_A_I;    //D_CAL_A_I是校正系数,默认是1
  F_AC_I = a;
  }
}

读取通道电压,实现代码如下所示:


void Read_HLW8110_U(void)
{
  float a;
  Uart_Read_HLW8110_Reg(REG_RMSU_ADDR,3);
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  U32_RMSU_RegData = (unsigned long)(u8_RxBuf[0]<<16) + (unsigned long)(u8_RxBuf[1]<<8) + (unsigned long)(u8_RxBuf[2]);
  printf("电压通道寄存器:%lx\n " ,U32_RMSU_RegData);
  }
  else
  {
  printf("电压通道寄存器读取出错\r\n");
  B_Read_Error = 1;
  }
  //电压
  //计算:U16_AC_V = (U32_RMSU_RegData * U16_RMSUC_RegData)/2^23
  if ((U32_RMSU_RegData &0x800000) == 0x800000)
  {
    F_AC_V = 0;
  }
  else
  {
  a =  (float)U32_RMSU_RegData;
  a = a*U16_RMSUC_RegData;  
  a = a/0x400000;       
  a = a/1;        // 1 = 电压系数
  a = a/100;        //计算出a = 22083.12mV,a/100表示220.8312V,电压转换成V
  a = a*D_CAL_U;    //D_CAL_U是校正系数,默认是1,  
  F_AC_V = a;
  }
}

读取通道功率,实现代码如下所示:


void Read_HLW8110_PA(void)
{
  float a;
  float b;
  Uart_Read_HLW8110_Reg(REG_POWER_PA_ADDR,4);
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  U32_POWERPA_RegData = (unsigned long)(u8_RxBuf[0]<<24) + (unsigned long)(u8_RxBuf[1]<<16) + (unsigned long)(u8_RxBuf[2]<<8) + (unsigned long)(u8_RxBuf[3]);
  printf("A通道功率寄存器:%lx\n " ,U32_POWERPA_RegData);
  }
  else
  {
  printf("A通道功率寄存器读取出错\r\n");
  B_Read_Error = 1;
  }
  if (U32_POWERPA_RegData > 0x80000000)
   {
     b = ~U32_POWERPA_RegData;
     a = (float)b;
   }
   else
     a =  (float)U32_POWERPA_RegData;
  //功率需要分正功和负功
  //计算,U16_AC_P = (U32_POWERPA_RegData * U16_PowerPAC_RegData)/(2^31*电压系数*电流系数)
  //单位为W,比如算出来5000.123,表示5000.123W
    a = a*U16_PowerPAC_RegData;
    a = a/0x80000000;             
    a = a/1;            // 1 = 电流系数
    a = a/1;            // 1 = 电压系数
    a = a * D_CAL_A_P;      //D_CAL_A_P是校正系数,默认是1
    F_AC_P = a;         //单位为W,比如算出来5000.123,表示5000.123W
}

读取通道有功电量,实现代码如下所示:


void Read_HLW8110_EA(void)
{
  float a;
  Uart_Read_HLW8110_Reg(REG_ENERGY_PA_ADDR,3); 
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  U32_ENERGY_PA_RegData = (unsigned long)(u8_RxBuf[0]<<16) + (unsigned long)(u8_RxBuf[1]<<8) + (unsigned long)(u8_RxBuf[2]);
  printf("A通道有功电量寄存器:%lx\n " ,U32_ENERGY_PA_RegData);
  }
  else
  {
  printf("A通道有功电量寄存器读取出错\r\n");
  B_Read_Error = 1;
  }
  Uart_Read_HLW8110_Reg(REG_HFCONST_ADDR,2); 
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  U16_HFConst_RegData = (unsigned int)(u8_RxBuf[0]<<8) + (unsigned int)(u8_RxBuf[1]);
  printf("HFCONST常数 = :%d\n " ,U16_HFConst_RegData);
  }
  else
  {
  printf("HFCONST常数寄存器读取出错\r\n");
  B_Read_Error = 1;
  }
  //电量计算,电量 = (U32_ENERGY_PA_RegData * U16_EnergyAC_RegData * HFCONST) /(K1*K2 * 2^29 * 4096)
  //HFCONST:默认值是0x1000, HFCONST/(2^29 * 4096) = 0x20000000
  a =  (float)U32_ENERGY_PA_RegData;  
  a = a*U16_EnergyAC_RegData;
  a = a/0x20000000;             //电量单位是0.001KWH,比如算出来是2.002,表示2.002KWH    
   a = a/1;            // 1 = 电流系数
   a = a/1;            // 1 = 电压系数
   a = a * D_CAL_A_E;        //D_CAL_A_E是校正系数,默认是1
  F_AC_E = a;
  F_AC_BACKUP_E = F_AC_E; 
}

读取通道的线性频率,实现代码如下所示:


void Read_HLW8110_LineFreq(void)
{
  float a;
  unsigned long b;
  Uart_Read_HLW8110_Reg(REG_UFREQ_ADDR,2);
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  b = (unsigned long)(u8_RxBuf[0]<<8) + (unsigned long)(u8_RxBuf[1]);
  printf("A通道线性频率寄存器:%ld\n " ,b);
  }
  else
  {
  printf("A通道线性频率寄存器读取出错\r\n");
  B_Read_Error = 1;
  }
  a = (float)b;
  a = 3579545/(8*a);    
  F_AC_LINE_Freq = a;
}

读取通道功率因素,实现代码如下所示:


void Read_HLW8110_PF(void)
{
  float a;
  unsigned long b;
//测量A通道的功率因素,需要发送EA+5A命令
//测量B通道的功率因素,需要发送EA+A5命令  
  Uart_Read_HLW8110_Reg(REG_PF_ADDR,3);
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  b = (unsigned long)(u8_RxBuf[0]<<16) + (unsigned long)(u8_RxBuf[1]<<8) + (unsigned long)(u8_RxBuf[2]);
  printf("A通道功率因素寄存器:%ld\n " ,b);
  }
  else
  {
  printf("读取A通道功率因素寄存器出错\r\n");
  B_Read_Error = 1;
  }
  if (b>0x800000)       //为负,容性负载
  {
      a = (float)(0xffffff-b + 1)/0x7fffff;
  }
  else
  {
      a = (float)b/0x7fffff;
  }
  if (F_AC_P < 0.3) // 小于0.3W,空载或小功率,PF不准
   a = 0; 
//功率因素*100,最大为100,最小负100
  F_AC_PF = a;
}

读取通道相位角,实现代码如下所示:


void Read_HLW8110_Angle(void)
{
  float a;  
  unsigned long b;
  Uart_Read_HLW8110_Reg(REG_ANGLE_ADDR,2);
  delay_ms(10);
  if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
  {
  b =(unsigned long)(u8_RxBuf[0]<<8) + (unsigned long)(u8_RxBuf[1]);
  printf("A通道线相角寄存器:%ld\n " ,b);
  }
  else
  {
  printf("A通道线相角寄存器出错\r\n");
  B_Read_Error = 1;
  }
  if ( F_AC_PF < 55)  //线性频率50HZ
  {
  a = b;
  a = a * 0.0805;
  F_Angle = a;
  }
  else
  {
  //线性频率60HZ
  a = b;
  a = a * 0.0965;
  F_Angle = a;
  }
  if (F_AC_P < 0.5)  //功率小于0.5时,说明没有负载,相角为0
  {
  F_Angle = 0;
  }
  if (F_Angle < 90)
  {
  a = F_Angle;
  printf("电流超前电压:%f\n " ,a);
  }
  else if (F_Angle < 180)
  {
  a = 180-F_Angle;
  printf("电流滞后电压:%f\n " ,a);  
  }
  else if (F_Angle < 360)
  {
  a = 360 - F_Angle;
  printf("电流滞后电压:%f\n " ,a);  
  }
  else
  {
    a = F_Angle -360;
    printf("电流超前电压:%f\n " ,a);  
  }
}

 


相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
24天前
|
传感器 存储 人工智能
智能农业的未来:物联网技术如何革新传统农业
本文探讨了物联网(IoT)技术在农业中的应用及其对传统农业的革新。通过详细分析当前农业面临的挑战,如资源浪费和效率低下,文章阐述了物联网技术如何通过实时数据监控和自动化系统提高农业生产的效率和可持续性。此外,文章还讨论了实施物联网技术时需要考虑的技术、经济和社会因素,以及未来发展趋势。
|
2月前
|
物联网 数据管理 Apache
拥抱IoT浪潮,Apache IoTDB如何成为你的智能数据守护者?解锁物联网新纪元的数据管理秘籍!
【8月更文挑战第22天】随着物联网技术的发展,数据量激增对数据库提出新挑战。Apache IoTDB凭借其面向时间序列数据的设计,在IoT领域脱颖而出。相较于传统数据库,IoTDB采用树形数据模型高效管理实时数据,具备轻量级结构与高并发能力,并集成Hadoop/Spark支持复杂分析。在智能城市等场景下,IoTDB能处理如交通流量等数据,为决策提供支持。IoTDB还提供InfluxDB协议适配器简化迁移过程,并支持细致的权限管理确保数据安全。综上所述,IoTDB在IoT数据管理中展现出巨大潜力与竞争力。
67 1
|
16天前
|
传感器 物联网 人机交互
物联网:物联网,作为新一代信息技术的重要组成部分,通过智能感知、识别技术与普适计算等通信感知技术,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现了物物相连、人物相连,开启了万物互联的新时代。
在21世纪,物联网(IoT)作为新一代信息技术的核心,正以前所未有的速度重塑生活、工作和社会结构。本文首先介绍了物联网的概念及其在各领域的广泛应用,强调其技术融合性、广泛的应用范围以及数据驱动的特点。接着,详细阐述了物联网行业的现状和发展趋势,包括政策支持、关键技术突破和应用场景深化。此外,还探讨了物联网面临的挑战与机遇,并展望了其未来在技术创新和模式创新方面的潜力。物联网行业正以其独特魅力引领科技发展潮流,有望成为推动全球经济发展的新引擎。
|
2月前
|
人工智能 网络协议 物联网
AIoT智能物联网平台技术架构
AIoT智能物联网平台的技术架构从终端设备到物联网平台可分为边缘侧网关、接入网关层、基础设施层、中台层和应用层。
82 14
|
2月前
|
人工智能 监控 安全
未来家居生活的智能革命:物联网技术的融合与应用
【8月更文挑战第31天】 随着科技的飞速发展,物联网技术已逐渐融入我们的日常生活。本文将探讨物联网技术如何改变我们的生活方式,特别是在家中的应用。从智能家居系统的构建到日常生活中的实际案例,我们将一窥物联网带来的便利与挑战,并提出对未来发展的展望。
37 1
|
7天前
|
存储 安全 物联网
未来触手可及:区块链技术、物联网与虚拟现实的融合趋势
【9月更文挑战第34天】本文将探讨当前最具变革性的三大技术——区块链、物联网(IoT)和虚拟现实(VR)——如何独立及联合塑造我们的未来。我们将深入分析每种技术的内在工作机制、发展趋势,以及它们如何相互交织创造出新的应用场景,进而推动社会进步和经济发展。
|
6天前
|
供应链 物联网 区块链
未来技术的浪潮之下——区块链、物联网与虚拟现实的融合与发展
【9月更文挑战第35天】在技术不断进步的今天,新兴技术如区块链、物联网和虚拟现实正在改变我们的生活方式。本文将深入探讨这些技术的发展趋势,以及它们如何在不同领域中应用,从而带来创新和便利。我们将通过具体的例子来展示这些技术如何相互融合,共同推动社会向前发展。
|
7天前
|
安全 物联网 区块链
未来已来:区块链技术在物联网与虚拟现实中的革新应用
【8月更文挑战第66天】随着科技的飞速发展,区块链、物联网(IoT)和虚拟现实(VR)等技术逐渐从概念走向现实,它们之间的融合预示着一个更加智能、互联的未来。本文将探讨这些技术的发展趋势,并通过实际代码示例,展示它们如何相互促进,共同构建一个更加安全、高效的数字生态系统。
49 19
|
7天前
|
存储 供应链 物联网
未来已来:区块链、物联网与虚拟现实技术的融合创新
【9月更文挑战第34天】本文将深入探索当前技术前沿的三大热点——区块链、物联网和虚拟现实,分析它们各自的发展趋势以及在实际应用中的潜力。我们将通过浅显易懂的语言和生动的例子,展示这些技术是如何相互促进,共同塑造未来的数字世界。
|
4天前
|
传感器 存储 运维
智能城市中的物联网技术应用与挑战
本文旨在探讨智能城市中物联网(IoT)技术的应用及其面临的主要挑战。通过分析当前智能城市建设中物联网的实际应用案例,揭示其在提高城市管理效率、优化资源使用等方面的显著效果。同时,本文指出了在数据安全、隐私保护和技术标准统一等方面存在的问题,并提出了相应的解决思路和建议。希望通过对这些问题的深入分析,为未来智能城市的可持续发展提供参考。

相关产品

  • 物联网平台