“鸡肋”的AI预测死亡系统,能否巧变“熊掌”?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 我不希望在最后离开的时候说不出话来,我希望可以在我还漂亮的时候跟他告别。

7a1a3c72896fa206f3be31bae43590bd.jpg



“我不希望在最后离开的时候说不出话来,我希望可以在我还漂亮的时候跟他告别。”最新一期的《奇葩大会》里,死亡体验馆馆主丁锐分享了一个感人的故事——一个癌症晚期的女性,为了能够优雅地和丈夫告别,和丈夫一起参与了死亡体验活动,在送别“死去的”妻子时,丈夫泣不成声。


对于一个癌症患者而言,“死亡”这个话题虽然十分沉重,但也需要预留空间去探讨和适应。而如果可以精准预测病患的“死亡”,是否能给予患者这个空间呢?


美国斯坦福大学开发了一款“预测死期”的AI系统。这款AI系统整理了近200万名成人和儿童患者的电子健康档案数据,以及相关的医学诊断信息,得到病情的大数据。再通过数据收集与系统自主学习机制,来预测病患具体的死亡时间。




 为了临终关怀,也为了拯救生命


在中国,每年有约700万人走向生命终点,但社会上提供的临终关怀服务却只能满足约15%的需求。该系统的出现,预示着医生们能够更加精确地安排病患的临终关怀。除此之外,利用“预测死亡”我们还可以发掘一条新的道路。


对于大限将至的晚期病患,我们可以通过长期的数据跟踪来判断死亡概率。而对于一些特殊疾病的突发症状,我们也可以通过机器学习,感知到病患的一些生命体征变化从而发出危险预警。


FDA(美国食品药品监督管理局)最近批准通过了首个可以预测死亡的AI产品,这个产品名叫Wave Clinical Platform,由医疗科技公司Excel Medical研发。


Wave是一个永远在线的远程监测平台,集成了医院和包括患者的用药情况、年龄、生理情况、既往病史、家族病史等实时数据。


这套系统可以感知生命体征的细微变化,从而在发生致命事件6小时前发出预警。也就是说,AI系统可以通过比较数据库中的猝死病例,从而提前6个小时预测“猝死时间”,为医护人员赢得抢救时间。


英国科学家也曾在《影像诊断学》杂志上发表文章说,人工智能可以预测心脏病人何时死亡。而这项技术能让医护人员发现需要更多干预治疗的患者,从而拯救更多的生命。




AI预测死亡——逃不出的笼子

对于AI预测死亡这一命题所遇到的问题,智能相对论(ID:aixdlun)分析师颜璇认为可以从这三个方面来考虑。


1.“预测死亡”即“判死刑”,病人能接受吗


不可否认的是,预测死亡确实可以让医生更合理地去配置医疗资源。但“死亡”并非那么容易被所有人接受。


Siddhartha Mukherjee在文章中讲过自己亲历的一个故事,他曾经治疗过一名食道癌患者,这个病人的治疗十分顺利,但还是存在着复发的可能性。于是医生提出了临终关怀的话题。但这位病人拒绝了。这位病人认为,他的身体状况越来越好,精神状态十分振作,为什么偏要说这些扫兴的话呢?


令人遗憾的是,这位病人的癌症还是复发了。在他临终前,他始终处于昏迷状态,无法回应在他病床旁的家人。


从这个故事中可见,并非每一个病人都能淡然地接受“死亡”这个话题。当病人与病魔和死神苦苦争斗时,医生们用一套所谓科学的、精密的AI系统预测了病人的死期,于病人而言,抗癌之旅本就艰辛,而在其头顶悬上一把会准时掉落的死亡之刃未免也太过残忍。


2.病情存在个体差异,复杂病例难以判断


AI预测死亡主要依赖于医疗大数据和深度学习。研究团队表示,这套AI系统收集了从发现病症到12个月内死亡的病人数据,然后通过深度神经网络利用大数据计算每条信息的权重和强度,生成一个给定患者在3到12个月内死亡的概率分数,通过分数预测病人在3-12个月内是否会死亡。


医疗数据种类繁杂,质量参差不齐,是一种极具个性化的信息。疾病的病程具有一定的规律,但具体病情症状却要因人而异。个人体质、周围环境等因素都会影响疾病的转归。除了个体的差异,疾病本身也难以被清楚地认知。比如,几乎任何传染病的初期症状都与感冒类似。也就是说,疾病本身是带有欺骗性的,在医院中,医生也常常需要借助辅助工具,在面对复杂病例时,医生们甚至需要召开病情讨论会议,几方会谈才能确定治疗方案。


再者,AI预测死亡的深度学习有一个令人费解的地方,也就是“黑盒子”问题——它能够推算出一个病患的死亡概率分数,却无法表达其背后的逻辑。


所以,通过概率分数来预测病人的死亡时间依旧存在着许多问题。单单针对某类疾病的死亡预测可能有效,但是预测大病种的死亡概率的可能性却微乎其微。


3.医疗大数据共享难


AI+医疗大多以算法开始,但最终还是会回到数据。尽管数据是所有AI项目的问题,但医疗行业的数据,尤其是这类关于生死的数据更难获取。


医疗信息与其它领域的信息不同,种类十分繁杂,标准也不统一。尤其许多病症会涉及到患者隐私,会有部分患者并不愿意将自己的医疗数据用于AI研究。


就质量而言,医疗数据也有更高的要求,比如,所有的医疗数据需要医生的人工标识。

除了病人,从医院方获取数据也有阻力,在不能确定某项研究会有利于医院救护的时候,医院恐怕并不愿意担风险贡献出所有的工作数据。而技术人员要如何和医生形成合力,获取高质量的大数据,是大部分人工智能医疗企业共同面临的难题。




 “鸡肋”如何巧变为“熊掌”


“AI预测死亡的准确率高达90%”更像是一个过度宣传的噱头,预测人类的死亡只是更方便进行姑息治疗,但其中还是会面临一些伦理问题。比如,要不要将死亡日期通知给病人和其家人?一套机器是否有资格来宣判人类的死亡期限呢?


而如果换个预测对象呢?设想一下,作为一只宠物狗的主人,当狗狗的身体机能渐渐衰老,主人是否想要知道这只狗狗什么时候会离世呢?由于语言的不通,人类会希望借助一些辅助工具更了解宠物,希望有更精确的医疗辅助系统来诊断宠物的病情,从而为宠物做更好的安排。面对宠物,AI预测死亡似乎更能被人类所接受。


AI预测死亡系统的发展过程应该是一个不断提升价值的过程,一方面,应该建立更多对象的数据库,依赖于深度学习来进行更多应用场景的选择。首先,选择一类对象(多半为宠物)作为训练学习模型的教材,然后,通过积累的“经验”来判断这类对象在发病期间的死亡概率,最后,对对象进行干预治疗。


另一方面,将预测死亡变成预测病程。预测场景从垂直领域到横向领域,构建一个智能预测系统,既包括病程的转归期,也包括病程前期的所有阶段,最后做到为用户个性化建模。  


在AI医疗上,我们细分了越来越多的名目。而“预测死亡”看起来涉及到了人类生死大事,但也只是触及到了事情的表面,在戳破了“死亡预测”这个气泡后,如何让AI医疗预测成为一个真正惠民的项目,触及到医疗痛点,恐怕才是大部分布局AI医疗的企业要思考的。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】昇思MindSpore并行
本文介绍昇思MindSpore的并行训练技术,包括张量重排布、自动微分等,旨在简化并行策略搜索,提高大规模模型训练效率。文章探讨了大模型带来的挑战及现有框架的局限性,详细说明了MindSpore如何通过技术创新解决这些问题,实现高效的大模型训练。
67 20
【AI系统】昇思MindSpore并行
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
14天前
|
机器学习/深度学习 人工智能 分布式计算
【AI系统】混合并行
混合并行融合了数据并行、模型并行和流水线并行,旨在高效利用计算资源,尤其适合大规模深度学习模型训练。通过将模型和数据合理分配至多个设备,混合并行不仅提升了计算效率,还优化了内存使用,使得在有限的硬件条件下也能处理超大型模型。3D混合并行(DP+PP+TP)是最先进的形式,需至少8个GPU实现。此策略通过拓扑感知3D映射最大化计算效率,减少通信开销,是当前深度学习训练框架如Deepspeed和Colossal AI的核心技术之一。
60 15
【AI系统】混合并行
|
11天前
|
存储 人工智能 vr&ar
转载:【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心部件,负责执行指令和控制所有组件。本文从CPU的发展史入手,介绍了从ENIAC到现代CPU的演变,重点讲述了冯·诺依曼架构的形成及其对CPU设计的影响。文章还详细解析了CPU的基本构成,包括算术逻辑单元(ALU)、存储单元(MU)和控制单元(CU),以及它们如何协同工作完成指令的取指、解码、执行和写回过程。此外,文章探讨了CPU的局限性及并行处理架构的引入。
转载:【AI系统】CPU 基础
|
11天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
14天前
|
存储 人工智能 PyTorch
【AI系统】张量并行
在大模型训练中,单个设备难以满足需求,模型并行技术应运而生。其中,张量并行(Tensor Parallelism, TP)将模型内部的参数和计算任务拆分到不同设备上,特别适用于大规模模型。本文介绍了张量并行的基本概念、实现方法及其在矩阵乘法、Transformer、Embedding和Cross Entropy Loss等场景中的应用,以及通过PyTorch DeviceMesh实现TP的具体步骤。
49 11
【AI系统】张量并行
|
11天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
11天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】关键设计指标
本文介绍了AI芯片的关键设计指标及其与AI计算模式的关系,涵盖计算单位(如OPS、MACs、FLOPs)、关键性能指标(精度、吞吐量、时延、能耗、成本、易用性)及优化策略,通过算术强度和Roofline模型评估AI模型在芯片上的执行性能,旨在帮助理解AI芯片设计的核心考量与性能优化方法。
转载:【AI系统】关键设计指标
|
11天前
|
机器学习/深度学习 人工智能 并行计算
转载:【AI系统】AI轻量化与并行策略
本文探讨了AI计算模式对AI芯片设计的重要性,重点分析了轻量化网络模型和大模型分布式并行两大主题。轻量化网络模型通过减少模型参数量和计算量,实现在资源受限设备上的高效部署;大模型分布式并行则通过数据并行和模型并行技术,解决大模型训练中的算力和内存瓶颈,推动AI技术的进一步发展。
转载:【AI系统】AI轻量化与并行策略
|
14天前
|
存储 机器学习/深度学习 人工智能
【AI系统】完全分片数据并行 FSDP
本文深入探讨了AI框架中针对权重数据、优化器数据和梯度数据的分布式并行实现,特别是在PyTorch框架下的具体方案。文章首先回顾了通用数据并行和分布式数据并行的概念,重点讨论了同步与异步数据并行的差异。接着,文章详细介绍了如何在PyTorch中实现弹性数据并行,特别是完全分片数据并行(FSDP)的机制,包括其如何通过分片模型状态和剩余状态来减少内存消耗,提高训练效率。此外,文章还探讨了混合精度训练、损失缩放和内存消耗估算等关键技术,为理解和实施高效的分布式训练提供了全面的指导。
55 9
【AI系统】完全分片数据并行 FSDP