深度学习常用数据集资源(计算机视觉领域)

简介: 深度学习常用数据集资源(计算机视觉领域)

目录

1、MNIST


2、ImageNet


4、COCO


5、PASCAL VOC


6、FDDB


1、MNIST

深度学习领域的入门数据集,当前主流的深度学习框架几乎都将MNIST数据集的处理入门第一教程。MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28,数字放在一个归一化的、固定尺寸的图片的中心。


数据集大小:~12MB


下载地址:http://yann.lecun.com/exdb/mnist/index.html


2、ImageNet  


image.png

image.png

Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。


Imagenet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注。


数据集大小:~1TB


下载地址:http://www.image-net.org/about-stats


CIFAR-10包含10个类别,50,000个训练图像,彩色图像大小:32x32,10,000个测试图像。CIFAR-100则是包含100个类,每类有600张图片,其中500张用于训练,100张用于测试;这100个类分组成20个超类。图像类别均有明确标注。CIFAR对于图像分类算法测试来说是一个非常不错的中小规模数据集,虽然用得人比以前少了很多,但仍然能用它做有趣的合理性测试。


数据集大小:~170MB


下载地址:http://www.cs.toronto.edu/~kriz/cifar.html


4、COCO  


image.png

image.png

COCO数据集由微软赞助,其对于图像的标注信息不仅有类别、位置信息,还有对图像的语义文本描述,COCO数据集的开源使得近两三年来图像分割语义理解取得了巨大的进展,也几乎成为了图像语义理解算法性能评价的“标准”数据集。


数据集大小:~40GB


下载地址:http://mscoco.org/


5、PASCAL VOC

image.png

PASCAL VOC图片集包括20个目录:人类;动物(鸟、猫、牛、狗、马、羊);交通工具(飞机、自行车、船、公共汽车、小轿车、摩托车、火车);室内(瓶子、椅子、餐桌、盆栽植物、沙发、电视)。PASCAL VOC挑战赛是视觉对象的分类识别和检测的一个基准测试,提供了检测算法和学习性能的标准图像注释数据集和标准的评估系统。


数据集大小:~2GB


下载地址:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html


6、FDDB


image.png

image.png

FDDB是全世界最具权威的人脸检测评测平台之一,包含2845张图片,共有5171个人脸作为测试集。测试集范围包括:不同姿势、不同分辨率、旋转和遮挡等图片,同时包括灰度图和彩色图,标准的人脸标注区域为椭圆形。该数据集的图片来自于美联社和路透社新闻报道图片,并删除了重复图片。


数据集大小:~550MB


下载地址:http://vis-www.cs.umass.edu/fddb/


相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
深度学习在计算机视觉中的突破与未来趋势###
【10月更文挑战第21天】 近年来,深度学习技术极大地推动了计算机视觉领域的发展。本文将探讨深度学习在图像识别、目标检测和图像生成等方面的最新进展,分析其背后的关键技术和算法,并展望未来的发展趋势和应用前景。通过这些探讨,希望能够为相关领域的研究者和从业者提供有价值的参考。 ###
34 4
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与计算机视觉的结合:技术趋势与应用
深度学习与计算机视觉的结合:技术趋势与应用
154 9
|
2月前
|
存储 人工智能 数据可视化
AI计算机视觉笔记二十一:PaddleOCR训练自定义数据集
在完成PaddleOCR环境搭建与测试后,本文档详细介绍如何训练自定义的车牌检测模型。首先,在`PaddleOCR`目录下创建`train_data`文件夹存放数据集,并下载并解压缩车牌数据集。接着,复制并修改配置文件`ch_det_mv3_db_v2.0.yml`以适应训练需求,包括设置模型存储目录、训练可视化选项及数据集路径。随后,下载预训练权重文件并放置于`pretrain_models`目录下,以便进行预测与训练。最后,通过指定命令行参数执行训练、断点续训、测试及导出推理模型等操作。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
3月前
|
机器学习/深度学习 JavaScript 前端开发
深度学习必备:对数据集的拆分、根据拆分图片拆分labels、对全部标注标签进行区间检查
使用JavaScript代码或浏览器扩展可以一次性在浏览器中打开多个相同的标签页。
|
2月前
|
人工智能 数据处理 计算机视觉
AI计算机视觉笔记十六:yolov5训练自己的数据集
本文介绍了一种利用云服务器AutoDL训练疲劳驾驶行为检测模型的方法。由于使用本地CPU训练效率低下,作者选择了性价比高的AutoDL云服务器。首先,从网络获取了2000多张疲劳驾驶行为图片并使用labelimg软件进行标注。接着,详细介绍了在云服务器上创建实例、上传数据集和YOLOv5模型、修改配置文件以及开始训练的具体步骤。整个训练过程耗时约3小时,最终生成了可用于检测的模型文件。
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
震撼发布!深度学习如何重塑计算机视觉:一场即将改变世界的革命!
【8月更文挑战第6天】随着AI技术的发展,深度学习已成为计算机视觉的核心驱动力。卷积神经网络(CNN)能自动提取图像特征,显著提升识别精度。目标检测技术如YOLO和Faster R-CNN实现了快速精准检测。语义分割利用FCN和U-Net达到像素级分类。这些进展极大提升了图像处理的速度与准确性,为自动驾驶、医疗影像等领域提供了关键技术支撑,预示着计算机视觉更加光明的未来。
39 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
【7月更文挑战第2天】计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。AlexNet开启新时代,后续模型不断优化,推动对象检测、语义分割、图像生成等领域发展。尽管面临数据隐私、模型解释性等挑战,深度学习已广泛应用于安防、医疗、零售和农业,预示着更智能、高效的未来,同时也强调了技术创新、伦理考量的重要性。
62 1
|
4月前
|
机器学习/深度学习 人工智能 固态存储
深度学习在计算机视觉中的应用:重塑视觉感知的未来
【7月更文挑战第1天】深度学习重塑计算机视觉未来:本文探讨了深度学习如何革新CV领域,核心涉及CNN、RNN和自注意力机制。应用包括目标检测(YOLO、SSD等)、图像分类(VGG、ResNet等)、人脸识别及医学影像分析。未来趋势包括多模态融合、语义理解、强化学习和模型可解释性,推动CV向更高智能和可靠性发展。
|
5月前
|
机器学习/深度学习 搜索推荐 自动驾驶
深度学习与计算机视觉的融合发展
深度学习与计算机视觉的融合发展
46 1

热门文章

最新文章

下一篇
无影云桌面