带着问题学 Kubernetes 架构!

简介: 开这篇文章的同学,想必对 docker 都不会陌生。docker 是一种虚拟容器技术,它上手比较简单,只需在宿主机上起一个 docker engine,然后就能愉快的玩耍了,如:拉镜像、起容器、挂载数据、映射端口等等。

作者:jasonGeng88 www.github.com/jasonGeng88/blog


打开这篇文章的同学,想必对 docker 都不会陌生。docker 是一种虚拟容器技术,它上手比较简单,只需在宿主机上起一个 docker engine,然后就能愉快的玩耍了,如:拉镜像、起容器、挂载数据、映射端口等等。


相对于 Kubernetes(K8S)的上手,可谓简单很多。那么 K8S 是什么,又为什么上手难度大?


K8S 是一个基于容器技术的分布式集群管理系统,是谷歌几十年来大规模应用容器技术的经验积累和升华的一个重要成果。


所以为了能够支持大规模的集群管理,它承载了很多的组件,而且分布式本身的复杂度就很高。又因为 K8S 是谷歌出品的,依赖了很多谷歌自己的镜像,所以对于国内的同学环境搭建的难度又增加了一层。


下面,我们带着问题,一步步来看 K8S 中到底有哪些东西?


首先,既然是个分布式系统,那势必有多个 Node 节点(物理主机或虚拟机),它们共同组成一个分布式集群,并且这些节点中会有一个 Master 节点,由它来统一管理 Node 节点。

image.png



问题一:主节点和工作节点是如何通信的呢?

首先,Master 节点启动时,会运行一个 kube-apiserver 进程,它提供了集群管理的 API 接口,是集群内各个功能模块之间数据交互和通信的中心枢纽,并且它页提供了完备的集群安全机制(后面还会讲到)。


在 Node 节点上,使用 K8S 中的 kubelet 组件,在每个 Node 节点上都会运行一个 kubelet 进程,它负责向 Master 汇报自身节点的运行情况,如 Node 节点的注册、终止、定时上报健康状况等,以及接收 Master 发出的命令,创建相应 Pod。


在 K8S 中,Pod 是最基本的操作单元,它与 docker 的容器有略微的不同,因为 Pod 可能包含一个或多个容器(可以是 docker 容器),这些内部的容器是共享网络资源的,即可以通过 localhost 进行相互访问。


关于 Pod 内是如何做到网络共享的,每个 Pod 启动,内部都会启动一个 pause 容器(google的一个镜像),它使用默认的网络模式,而其他容器的网络都设置给它,以此来完成网络的共享问题。

image.png



问题二:Master 是如何将 Pod 调度到指定的 Node 上的?

该工作由 kube-scheduler 来完成,整个调度过程通过执行一些列复杂的算法最终为每个 Pod 计算出一个最佳的目标 Node,该过程由 kube-scheduler 进程自动完成。常见的有轮询调度(RR)。


当然也有可能,我们需要将 Pod 调度到一个指定的 Node 上,我们可以通过节点的标签(Label)和 Pod 的 nodeSelector 属性的相互匹配,来达到指定的效果。


image.png


关于标签(Label)与选择器(Selector)的概念,后面会进一步介绍


问题三:各节点、Pod 的信息都是统一维护在哪里的,由谁来维护?


从上面的 Pod 调度的角度看,我们得有一个存储中心,用来存储各节点资源使用情况、健康状态、以及各 Pod 的基本信息等,这样 Pod 的调度来能正常进行。


在 K8S 中,采用 etcd 组件 作为一个高可用强一致性的存储仓库,该组件可以内置在 K8S 中,也可以外部搭建供 K8S 使用。推荐看下:图文详解 Kubernetes。


集群上的所有配置信息都存储在了 etcd,为了考虑各个组件的相对独立,以及整体的维护性,对于这些存储数据的增、删、改、查,统一由 kube-apiserver 来进行调用,apiserver 也提供了 REST 的支持,不仅对各个内部组件提供服务外,还对集群外部用户暴露服务。


外部用户可以通过 REST 接口,或者 kubectl 命令行工具进行集群管理,其内在都是与 apiserver 进行通信。

image.png



问题四:外部用户如何访问集群内运行的 Pod ?

前面讲了外部用户如何管理 K8S,而我们更关心的是内部运行的 Pod 如何对外访问。使用过 docker 的同学应该知道,如果使用 bridge 模式,在容器创建时,都会分配一个虚拟 IP,该 IP 外部是没法访问到的,我们需要做一层端口映射,将容器内端口与宿主机端口进行映射绑定,这样外部通过访问宿主机的指定端口,就可以访问到内部容器端口了。


那么,K8S 的外部访问是否也是这样实现的?答案是否定的,K8S 中情况要复杂一些。因为上面讲的 docker 是单机模式下的,而且一个容器对外就暴露一个服务。在分布式集群下,一个服务往往由多个 Application 提供,用来分担访问压力,而且这些 Application 可能会分布在多个节点上,这样又涉及到了跨主机的通信。


这里,K8S 引入了 service 的概念,将多个相同的 Pod 包装成一个完整的 service 对外提供服务,至于获取到这些相同的 Pod,每个 Pod 启动时都会设置 labels 属性,在 service 中我们通过选择器 selector,选择具有相同 name 标签属性的 Pod,作为整体服务,并将服务信息通过 apiserver 存入 etcd 中,该工作由 Service Controller 来完成。同时,每个节点上会启动一个 kube-proxy 进程,由它来负责服务地址到 Pod 地址的代理以及负载均衡等工作。


image.png


问题五:Pod 如何动态扩容和缩放?

既然知道了服务是由 Pod 组成的,那么服务的扩容也就意味着 Pod 的扩容。通俗点讲,就是在需要时将 Pod 复制多份,在不需要后,将 Pod 缩减至指定份数。


K8S 中通过 Replication Controller 来进行管理,为每个 Pod 设置一个期望的副本数,当实际副本数与期望不符时,就动态的进行数量调整,以达到期望值。期望数值可以由我们手动更新,或自动扩容代理来完成。


image.png


问题六:各个组件之间是如何相互协作的?

最后,讲一下 kube-controller-manager 这个进程的作用。我们知道了 ectd 是作为集群数据的存储中心, apiserver 是管理数据中心,作为其他进程与数据中心通信的桥梁。


而 Service Controller、Replication Controller 这些统一交由 kube-controller-manager 来管理,kube-controller-manager 作为一个守护进程,每个 Controller 都是一个控制循环,通过 apiserver 监视集群的共享状态,并尝试将实际状态与期望不符的进行改变。关于 Controller,manager 中还包含了 Node 节点控制器(Node Controller)、资源配额管控制器(ResourceQuota Controller)、命名空间控制器(Namespace Controller)等。


image.png


总结

本文通过问答的方式,没有涉及任何深入的实现细节,从整体的角度,概念性的介绍了 K8S 中涉及的基本概念,其中使用相关的包括有:


Node


Pod


Label


Selector


Replication Controller


Service Controller


ResourceQuota Controller


Namespace Controller


Node Controller


以及运行进程相关的有:


kube-apiserver


kube-controller-manager


kube-scheduler


kubelet


kube-proxy


pause


这也是我学习 K8S 后对其整体架构的一次总结,因为在刚上手时,阅读官方文档,确实被如此多的内容搞得有点晕,所在在这里进行了简单的梳理。文中有理解不到位的地方,欢迎指正!



相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3天前
|
Kubernetes 持续交付 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
【5月更文挑战第17天】在当今云计算和微服务架构的大潮中,Docker容器化技术和Kubernetes容器编排系统成为了后端开发领域的热门技术栈。本文将探讨如何通过Docker和Kubernetes的结合使用来构建一个高效、可扩展且易于管理的微服务环境。我们将从基础概念出发,深入到实际操作层面,最后讨论这种组合对持续集成和持续部署(CI/CD)流程的影响,旨在为开发者和企业提供一种可靠的后端服务解决方案。
|
5天前
|
Kubernetes API 调度
Kubernetes学习-核心概念篇(二) 集群架构与组件
Kubernetes学习-核心概念篇(二) 集群架构与组件
|
5天前
|
Kubernetes Cloud Native 持续交付
构建高效云原生应用:Kubernetes与微服务架构的融合
【5月更文挑战第6天】 在数字化转型的浪潮中,企业正迅速采纳云原生技术以实现敏捷性、可扩展性和弹性。本文深入探讨了如何利用Kubernetes这一领先的容器编排平台,结合微服务架构,构建和维护高效、可伸缩的云原生应用。通过分析现代软件设计原则和最佳实践,我们提出了一个综合指南,旨在帮助开发者和系统架构师优化云资源配置,提高部署流程的自动化水平,并确保系统的高可用性。
32 1
|
5天前
|
Kubernetes 监控 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
【5月更文挑战第4天】在现代软件开发中,微服务架构已成为实现可扩展、灵活且独立部署服务的流行解决方案。本文将探讨如何利用Docker容器化技术和Kubernetes容器编排平台来构建一个高效的微服务系统。我们将分析Docker和Kubernetes的核心优势,并指导读者如何通过这些工具优化微服务部署、管理和扩展过程。文章还将涉及监控和日志管理策略,以确保系统的健壮性和可靠性。
|
5天前
|
Kubernetes 监控 Docker
|
5天前
|
Kubernetes 负载均衡 Docker
【专栏】构建高效微服务架构:Docker和Kubernetes在构建微服务架构中的应用
【4月更文挑战第27天】本文介绍了Docker和Kubernetes在构建微服务架构中的应用。Docker是开源容器引擎,用于打包和分发应用,实现隔离和封装,提升可扩展性和可维护性。Kubernetes是容器编排平台,自动化部署、扩展和管理容器,提供负载均衡和故障转移。二者结合,能高效支持微服务架构。文中通过实例展示了如何将用户、商品和订单服务用Docker打包,再用Kubernetes部署和管理,确保微服务稳定运行。
|
5天前
|
Kubernetes 负载均衡 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
【4月更文挑战第24天】 随着现代软件开发的演变,微服务架构已成为实现可扩展、灵活且容错的系统的首选方法。本文将深入探讨如何利用Docker容器化技术和Kubernetes容器编排平台来构建和维护一个高效的微服务环境。我们将分析Docker和Kubernetes的核心原理,并展示它们如何协同工作以支持服务的部署、管理和自动化扩展。通过实际案例和最佳实践,读者将了解到在设计微服务时如何避免常见的陷阱,并采取策略优化性能和资源利用率。
|
5天前
|
Kubernetes 应用服务中间件 Docker
Kubernetes学习-集群搭建篇(二) 部署Node服务,启动JNI网络插件
Kubernetes学习-集群搭建篇(二) 部署Node服务,启动JNI网络插件
|
19小时前
|
运维 监控 Kubernetes
Kubernetes 集群的监控与日志管理最佳实践
【5月更文挑战第19天】 在现代微服务架构中,容器编排平台如Kubernetes已成为部署、管理和扩展应用程序的关键工具。随着其应用范围不断扩大,集群的稳定性和性能监控变得至关重要。本文将探讨针对Kubernetes集群的监控策略,并深入分析日志管理的实现方法。通过介绍先进的技术堆栈和实用工具,旨在为运维专家提供一套完整的解决方案,以确保集群运行的透明度和可靠性。
27 3
|
1天前
|
存储 运维 监控
Kubernetes 集群的监控与性能优化策略
【5月更文挑战第19天】 在微服务架构日益普及的背景下,容器编排工具如Kubernetes已成为部署、管理和扩展服务的关键平台。然而,随着集群规模的增长和服务的复杂化,有效的监控和性能优化成为确保系统稳定性和高效性的重要挑战。本文将探讨针对Kubernetes集群监控的最佳实践,并提出一系列性能优化策略,旨在帮助运维人员识别潜在的瓶颈,保障服务的持续可靠性及响应速度。