Java中的对象都是在堆上分配的吗?

简介: 为了防止歧义,可以换个说法:Java对象实例和数组元素都是在堆上分配内存的吗?答:不一定。满足特定条件时,它们可以在(虚拟机)栈上分配内存。

为了防止歧义,可以换个说法:


Java对象实例和数组元素都是在堆上分配内存的吗?


答:不一定。满足特定条件时,它们可以在(虚拟机)栈上分配内存。


image.png


JVM内存结构很重要,多多复习


这和我们平时的理解可能有些不同。虚拟机栈一般是用来存储基本数据类型、引用和返回地址的,怎么可以存储实例数据了呢?


这是因为Java JIT(just-in-time)编译器进行的两项优化,分别称作逃逸分析(escape analysis)和标量替换(scalar replacement)。

image.png



注意看一下JIT的位置


中文维基上对逃逸分析的描述基本准确,摘录如下:


在编译程序优化理论中,逃逸分析是一种确定指针动态范围的方法——分析在程序的哪些地方可以访问到指针。当一个变量(或对象)在子程序中被分配时,一个指向变量的指针可能逃逸到其它执行线程中,或是返回到调用者子程序。


如果一个子程序分配一个对象并返回一个该对象的指针,该对象可能在程序中被访问到的地方无法确定——这样指针就成功“逃逸”了。如果指针存储在全局变量或者其它数据结构中,因为全局变量是可以在当前子程序之外访问的,此时指针也发生了逃逸。


逃逸分析确定某个指针可以存储的所有地方,以及确定能否保证指针的生命周期只在当前进程或线程中。


简单来讲,JVM中的逃逸分析可以通过分析对象引用的使用范围(即动态作用域),来决定对象是否要在堆上分配内存,也可以做一些其他方面的优化。


关于逃逸分析,大家可以看下这篇文章:面试问我 Java 逃逸分析,瞬间被秒杀了。以下的例子说明了一种对象逃逸的可能性。

static StringBuilder getStringBuilder1(String a, String b) {
    StringBuilder builder = new StringBuilder(a);
    builder.append(b);
    return builder; // builder通过方法返回值逃逸到外部
}
static String getStringBuilder2(String a, String b) {
    StringBuilder builder = new StringBuilder(a);
    builder.append(b);
    return builder.toString(); // builder范围维持在方法内部,未逃逸
}

以JDK 1.8为例,可以通过设置JVM参数-XX:+DoEscapeAnalysis、-XX:-DoEscapeAnalysis来开启或关闭逃逸分析默认当然是开启的)。

下面先写一个没有对象逃逸的例子。

public class EscapeAnalysisTest {
  public static void main(String[] args) throws Exception {
    long start = System.currentTimeMillis();
    for (int i = 0; i < 5000000; i++) {
      allocate();
    }
    System.out.println((System.currentTimeMillis() - start) + " ms");
    Thread.sleep(600000);
  }
  static void allocate() {
    MyObject myObject = new MyObject(2019, 2019.0);
  }
  static class MyObject {
    int a;
    double b;
    MyObject(int a, double b) {
      this.a = a;
      this.b = b;
    }
  }
}

然后通过开启和关闭DoEscapeAnalysis开关观察不同。

关闭逃逸分析

~ java -XX:-DoEscapeAnalysis EscapeAnalysisTest
76 ms
~ jmap -histo 26031
 num #instances #bytes class name
----------------------------------------------
   1: 5000000      120000000  me.lmagics.EscapeAnalysisTest$MyObject
   2: 636       12026792  [I
   3: 3097        1524856  [B
   4: 5088         759960  [C
   5: 3067          73608  java.lang.String
   6: 623          71016  java.lang.Class
   7: 727          43248  [Ljava.lang.Object;
   8: 532          17024  java.io.File
   9: 225          14400  java.net.URL
  10: 334          13360  java.lang.ref.Finalizer
# ......

开启逃逸分析

~ java -XX:+DoEscapeAnalysis EscapeAnalysisTest
4 ms
~ jmap -histo 26655
 num #instances #bytes class name
----------------------------------------------
   1: 592       11273384  [I
   2: 90871        2180904  me.lmagics.EscapeAnalysisTest$MyObject
   3: 3097        1524856  [B
   4: 5088         759952  [C
   5: 3067          73608  java.lang.String
   6: 623          71016  java.lang.Class
   7: 727          43248  [Ljava.lang.Object;
   8: 532          17024  java.io.File
   9: 225          14400  java.net.URL
  10: 334          13360  java.lang.ref.Finalizer
# ......

可见,关闭逃逸分析之后,堆上有5000000个MyObject实例,而开启逃逸分析之后,就只剩下90871个实例了,不管是实例数还是内存占用都只有原来的2%不到。


另外,如果把堆内存限制得小一点(比如加上-Xms10m -Xmx10m),并且打印GC日志(-XX:+PrintGCDetails)的话,关闭逃逸分析还会造成频繁的GC,开启逃逸分析就没有这种情况。这说明逃逸分析确实降低了堆内存的压力。


但是,逃逸分析只是栈上内存分配的前提,接下来还需要进行标量替换才能真正实现。


所谓标量,就是指JVM中无法再细分的数据,比如int、long、reference等。相对地,能够再细分的数据叫做聚合量。


仍然考虑上面的例子,MyObject就是一个聚合量,因为它由两个标量a、b组成。通过逃逸分析,JVM会发现myObject没有逃逸出allocate()方法的作用域,标量替换过程就会将myObject直接拆解成a和b,也就是变成了:


static void allocate() {
    int a = 2019;
    double b = 2019.0;
}

可见,对象的分配完全被消灭了,而int、double都是基本数据类型,直接在栈上分配就可以了。所以,在对象不逃逸出作用域并且能够分解为纯标量表示时,对象就可以在栈上分配。


JVM提供了参数-XX:+EliminateAllocations来开启标量替换,默认仍然是开启的。显然,如果把它关掉的话,就相当于禁止了栈上内存分配,只有逃逸分析是无法发挥作用的。


在Debug版JVM中,还可以通过参数-XX:+PrintEliminateAllocations来查看标量替换的具体情况。


除了标量替换之外,通过逃逸分析还能实现同步消除


(synchronization elision),当然它与本文的主题无关了。


举个例子:

private void someMethod() {
    Object lockObject = new Object();
    synchronized (lockObject) {
      System.out.println(lockObject.hashCode());
    }
}

lockObject这个锁对象的生命期只在someMethod()方法中,并不存在多线程访问的问题,所以synchronized块并无意义,会被优化掉:

private void someMethod() {
    Object lockObject = new Object();
    System.out.println(lockObject.hashCode());
}
相关文章
|
21天前
|
设计模式 网络协议 数据可视化
Java 设计模式之状态模式:让对象的行为随状态优雅变化
状态模式通过封装对象的状态,使行为随状态变化而改变。以订单为例,将待支付、已支付等状态独立成类,消除冗长条件判断,提升代码可维护性与扩展性,适用于状态多、转换复杂的场景。
199 0
|
3月前
|
缓存 安全 Java
Java反射机制:动态操作类与对象
Java反射机制是运行时动态操作类与对象的强大工具,支持获取类信息、动态创建实例、调用方法、访问字段等。它在框架开发、依赖注入、动态代理等方面有广泛应用,但也存在性能开销和安全风险。本文详解反射核心API、实战案例及性能优化策略,助你掌握Java动态编程精髓。
|
3月前
|
存储 人工智能 JavaScript
Java从作用域到对象高级应用​
本内容详细讲解了JavaScript中的作用域类型(函数作用域、块作用域、全局作用域)、作用域链、垃圾回收机制、闭包、变量提升、函数参数、数组方法、内置构造函数、对象高级知识、原型链、对象赋值、深浅拷贝、递归、异常处理及this指向等内容,全面覆盖JS核心概念与编程技巧。
40 0
|
4月前
|
存储 Java
Java对象的内存布局
在HotSpot虚拟机中,Java对象的内存布局分为三部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。对象头包含Mark Word、Class对象指针及数组长度;实例数据存储对象的实际字段内容;对齐填充用于确保对象大小为8字节的整数倍。
|
5月前
|
Java 数据库连接 API
Java 对象模型现代化实践 基于 Spring Boot 与 MyBatis Plus 的实现方案深度解析
本文介绍了基于Spring Boot与MyBatis-Plus的Java对象模型现代化实践方案。采用Spring Boot 3.1.2作为基础框架,结合MyBatis-Plus 3.5.3.1进行数据访问层实现,使用Lombok简化PO对象,MapStruct处理对象转换。文章详细讲解了数据库设计、PO对象实现、DAO层构建、业务逻辑封装以及DTO/VO转换等核心环节,提供了一个完整的现代化Java对象模型实现案例。通过分层设计和对象转换,实现了业务逻辑与数据访问的解耦,提高了代码的可维护性和扩展性。
205 1
|
5月前
|
前端开发 Java 数据库连接
java bo 对象详解_全面解析 java 中 PO,VO,DAO,BO,POJO 及 DTO 等几种对象类型
Java开发中常见的六大对象模型(PO、VO、DAO、BO、POJO、DTO)各有侧重,共同构建企业级应用架构。PO对应数据库表结构,VO专为前端展示设计,DAO封装数据访问逻辑,BO处理业务逻辑,POJO是简单的Java对象,DTO用于层间数据传输。它们在三层架构中协作:表现层使用VO,业务层通过BO调用DAO处理PO,DTO作为数据传输媒介。通过在线商城的用户管理模块示例,展示了各对象的具体应用。最佳实践包括保持分层清晰、使用工具类转换对象,并避免过度设计带来的类膨胀。理解这些对象模型的区别与联系。
356 1
|
6月前
|
Java
深入JavaSE:详解Java对象的比较。
总的来说,Java对象的比较就像海洋生物的比较,有外在的,有内在的,有面对所有情况的,也有针对特殊情况的。理解并掌握这些比较方式,就能更好地驾驭Java的世界,游刃有余地操作Java对象。
115 12
|
7月前
|
编解码 JavaScript 前端开发
【Java进阶】详解JavaScript的BOM(浏览器对象模型)
总的来说,BOM提供了一种方式来与浏览器进行交互。通过BOM,你可以操作窗口、获取URL、操作历史、访问HTML文档、获取浏览器信息和屏幕信息等。虽然BOM并没有正式的标准,但大多数现代浏览器都实现了相似的功能,因此,你可以放心地在你的JavaScript代码中使用BOM。
204 23
|
7月前
|
Java 数据安全/隐私保护
Java 类和对象
本文介绍了Java编程中类和对象的基础知识,作为面向对象编程(OOP)的核心概念。类是对象的蓝图,定义实体类型;对象是具体实例,包含状态和行为。通过示例展示了如何创建表示汽车的类及其实例,并说明了构造函数、字段和方法的作用。同时,文章还探讨了访问修饰符的使用,强调封装的重要性,如通过getter和setter控制字段访问。最后总结了类与对象的关系及其在Java中的应用,并建议进一步学习继承等概念。
159 1
|
8月前
|
设计模式 缓存 Java
重学Java基础篇—Java对象创建的7种核心方式详解
本文全面解析了Java中对象的创建方式,涵盖基础到高级技术。包括`new关键字`直接实例化、反射机制动态创建、克隆与反序列化复用对象,以及工厂方法和建造者模式等设计模式的应用。同时探讨了Spring IOC容器等框架级创建方式,并对比各类方法的适用场景与优缺点。此外,还深入分析了动态代理、Unsafe类等扩展知识及注意事项。最后总结最佳实践,建议根据业务需求选择合适方式,在灵活性与性能间取得平衡。
503 3