【C语言】想要节省空间,你必须要知道——动态内存管理(附通讯录动态内存版源码)

简介: 【C语言】想要节省空间,你必须要知道——动态内存管理(附通讯录动态内存版源码)

image.png

【C语言】想要节省空间,你必须要知道——动态内存管理 (附通讯录动态内存版源码)

1.    为什么存在动态内存分配

2.    动态内存函数的介绍

2.1    malloc

2.2    free

malloc和free通常配合一起使用:

2.3    calloc

2.4    realloc

3.    常见的动态内存错误

4.    几个经典的笔试题

   题目1:

   代码分析:

   代码改正:

   题目2:

   代码分析:

   代码改正:

   题目3 :

   代码分析:

   代码改正:

   题目4 :

   代码分析:

   代码改正:

5.    柔性数组

通讯录(动态储存版本)源码


(附通讯录动态内存版源码))

1.    为什么存在动态内存分配

我们已经掌握的内存开辟方式有:


int val = 20; //在栈空间上开辟四个字节

char arr[10] = {0}; //在栈空间上开辟10个字节的连续空间


但是上述的开辟空间的方式有两个特点:


1 . 空间开辟大小是固定的。

2 . 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。


但是对于空间的需求,不仅仅是上述的情况。

有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。

这时候就只能试试动态存开辟了。


2.    动态内存函数的介绍

2.1    malloc

C语言为我们提供了一个动态内存开辟的函数:


描述


C 库函数 void *malloc(size_t size) 分配所需的内存空间,并返回一个指向它的指针。


声明


void *malloc(size_t size)


参数


size – 内存块的大小,以字节为单位。


返回值


该函数返回一个指针 ,指向已分配大小的内存。如果请求失败,则返回 NULL。


注意点:


1.如果开辟成功,则返回一个指向开辟好空间的指针。

2.如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。

3.返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。

4.如果参数 size 为 0,malloc的行为是标准是未定义的,取决于编译器。

5.malloc开辟的内存空间是在堆上的,不会自动释放空间。


2.2    free

由于malloc是在堆空间上开辟内存,不会被自动释放,容易造成内存泄漏

这时候,C语言里提供了一个free函数,来人为释放动态内存开辟的空间,将空间还给操作系统


描述


C 库函数 void free(void *ptr) 释放之前调用 calloc、malloc 或 realloc 所分配的内存空间。


声明


void free(void *ptr)


参数


ptr – 指针指向一个要释放内存的内存块,该内存块之前是通过调用 malloc、calloc 或 realloc 进行分配内存的。如果传递的参数是一个空指针,则不会执行任何动作。


返回值


该函数不返回任何值。


注意:


1.如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。

2.如果参数 ptr 是NULL指针,则函数什么事都不做。

3.通常在free完之后,要 ptr=NULL;将指针给置空,否则当释放了空间,这块空间的指针仍然存在,就会造成一个野指针


malloc和free通常配合一起使用:

举个栗子

image.png

2.3    calloc

描述


C 库函数 void *calloc(size_t nitems, size_t size) 分配所需的内存空间,并返回一个指向它的指针。malloc 和 calloc 之间的不同点是,malloc 不会设置内存为零,而 calloc 会设置分配的内存为零。


声明


void *calloc(size_t nitems, size_t size)


参数


nitems – 要被分配的元素个数。

size – 元素的大小。


返回值


该函数返回一个指针,指向已分配的内存。如果请求失败,则返回 NULL。


注意:


1.函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。

2.与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。


举个例子:


malloc不会初始化空间,cd就是随机值的意思

image.png

calloc会初始化空间为0

image.png

2.4    realloc

描述


C 库函数 void *realloc(void *ptr, size_t size) 尝试重新调整之前调用 malloc 或 calloc 所分配的 ptr 所指向的内存块的大小。


声明


void *realloc(void *ptr, size_t size)


参数


ptr – 指针指向一个要重新分配内存的内存块,该内存块之前是通过调用 malloc、calloc 或 realloc 进行分配内存的。如果为空指针,则会分配一个新的内存块,且函数返回一个指向它的指针。

size – 内存块的新的大小,以字节为单位。如果大小为 0,且 ptr 指向一个已存在的内存块,则 ptr 所指向的内存块会被释放,并返回一个空指针。


返回值


该函数返回一个指针 ,指向重新分配大小的内存。如果请求失败,则返回 NULL。


注意:


这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间。


realloc在调整内存空间的时候存在两种情况:

情况1:原有空间之后没有足够大的空间

情况2:原有空间之后有足够大的空间

image.png

因为有两种情况的存在,所以我们在使用realloc函数的同时要注意检查返回的是否为空指针

image.png

3.    常见的动态内存错误

对NULL指针的解引用操作

image.png

对动态开辟空间的越界访问

image.png

对非动态开辟内存使用free释放

image.png

使用free释放一块动态开辟内存的一部分

image.png

对同一块动态内存多次释放

image.png

动态开辟内存忘记释放(内存泄漏)

image.png

忘记释放不再使用的动态开辟的空间会造成内存泄漏

切记: 动态开辟的空间一定要释放,并且正确释放 。

4.    几个经典的笔试题

   题目1:

image.png

运行Test会有什么结果?

答案是会程序会挂掉

   代码分析:

错误原因;

①str传给p的时候,是值传递,p是str的临时拷贝,所以当malloc开辟的空间起始地址放在p中时,不会影响str,str依然为NULL

②当str时NULL,strcpy想把hello world拷贝到str指向的空间时,程序就崩溃了,因为NULL指针指向的空间是不能直接访问的


图解:*

image.png

代码改正:

image.png

题目2:

image.png

运行Test会有什么结果?

答案是

image.png

   代码分析:

错误原因;

p局部变量(局部变量是存在栈区的),函数调用完之后就会随着函数空间的销毁而销毁,将内存空间还给操作系统

②返回的p实际上已经是一个野指针了,指向的是未知的空间


图解:

image.png

代码改正:

image.png

  题目3 :

image.png

运行Test会有什么结果?

答案是

内存泄漏!!!!

代码分析:

错误原因;

malloc申请了内存空间,是在堆区上的,是不会自动销毁的

②如果在使用完成之后没有free掉这块空间,会造成内存泄漏,内存泄漏是指程序中已动态分配的的堆内存,由于某些原因无法释放或者未释放,造成的内存浪费


图解:

image.png

代码改正:

image.png

题目4 :

image.png

运行Test会有什么结果?

答案是

数据非法访问

   代码分析:

错误原因;

free完之后没有将指针置空,造成了野指针的存在

野指针会导致非法访问行为


图解:

image.png

 代码改正:

image.png

5.    柔性数组

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。

C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

例如:

image.png

有些编译器会报错无法编译可以改成:

image.png


柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

例如:

image.png

柔性数组的使用

image.png这样柔性数组成员a,相当于获得了100个整型元素的连续空间

柔性数组的优势

上述的 type_a 结构也可以设计为:

image.png

上述 代码1 和 代码2 可以完成同样的功能

但是 方法1 的实现有两个好处:


第一个好处是:方便内存释放


如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。


第二个好处是:这样有利于访问速度.


连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)


通讯录(动态储存版本)源码

通讯录.c

#include "contact.h"
void menu()  
{
  printf("******************************\n");
  printf("****  1. 添加      2. 删除  **\n");
  printf("****  3. 搜索      4. 修改  **\n");
  printf("****  5. 展示全部  6. 排序  **\n");
  printf("****  0. 退出               **\n");
  printf("******************************\n");
}
int main()
{
  int input = 0;
  //创建一个通讯录
  struct Contact con;
  //初始化通讯录
  InitContact(&con);
  do
  {
    menu();
    printf("请选择:>");
    scanf_s("%d", &input);
    switch (input)
    {
    case ADD:
      AddContact(&con);
      break;
    case DEL:
      DeletContact(&con);
      break;
    case SHOW:
      ShowContact(&con);
      break;
    case MODIFY:
      ModifyContact(&con);
      break;
    case SEARCH:
      SearchContact(&con);
      break;
    case SORT:
      SortContact(&con);
      break;
    case EXIT:
      //销毁通讯录
      DestroyContact(&con);
      printf("退出通讯录\n");
      break;
    default:
      printf("选择错误\n");
      break;
    }
  } while (input);
  return 0;
}

contact.c

#include "contact.h"
//静态初始化
//void InitContact(struct Contact* pc)
//{
//  pc->sz = 0;//默认没有信息
//  memset(pc->data, 0, MAX*sizeof(struct PeoInfo));
//  memset(pc->data, 0, sizeof(pc->data));
//}
//动态初始化
void InitContact(struct Contact* pc)
{
  pc->sz = 0;
  pc->data = (struct PeoInfo*)malloc(DEFAULT_SZ * sizeof(struct PeoInfo));
  pc->capacity = DEFAULT_SZ;//初始最大容量为3
}
//静态添加
//void AddContact(struct Contact* pc)
//{
//  if (pc->sz == MAX)
//  {
//    printf("通讯录满了\n");
//  }
//  else
//  {
//    printf("请输入名字:>");
//    scanf_s("%s", pc->data[pc->sz].name, 30);
//    printf("请输入年龄:>");
//    scanf_s("%d", &(pc->data[pc->sz].age));
//    printf("请输入性别:>");
//    scanf_s("%s", pc->data[pc->sz].sex, 5);
//    printf("请输入电话:>");
//    scanf_s("%s", pc->data[pc->sz].tele, 12);
//    printf("请输入地址:>");
//    scanf_s("%s", pc->data[pc->sz].addr, 30);
//
//
//    printf("添加成功\n");
//    pc->sz++;
//    ShowContact(pc);
//  }
//}
//动态添加
void AddContact(struct Contact* pc)
{
  if (pc->sz == pc->capacity)
  {
    struct PeoInfo* ptr = (struct PeoInfo*)realloc(pc->data, (pc->capacity + 2) * sizeof(struct PeoInfo));
    if (ptr != NULL)
    {
      pc->data = ptr;
      pc->capacity += 2;
      printf("增容成功\n");
    }
    else
    {
      return;
    }
    printf("增容成功\n");
  }
  //录入新增人的信息
      printf("请输入名字:>");
    scanf_s("%s", pc->data[pc->sz].name, 30);
    printf("请输入年龄:>");
    scanf_s("%d", &(pc->data[pc->sz].age));
    printf("请输入性别:>");
    scanf_s("%s", pc->data[pc->sz].sex, 5);
    printf("请输入电话:>");
    scanf_s("%s", pc->data[pc->sz].tele, 12);
    printf("请输入地址:>");
    scanf_s("%s", pc->data[pc->sz].addr, 30);
    printf("添加成功\n");
    pc->sz++;
    ShowContact(pc);
}
void DeletContact(struct Contact* pc)
{
  printf("请输入需要删除的联系人姓名\n");
  char name[30] = "0";
  scanf_s("%s", name, 30);
  for (int i = 0; i < pc->sz; i++)
  {
    if (strcmp(name, pc->data[i].name) == 0)
    {
      for (int j = i; j < pc->sz-1; j++)
      {
        strcpy_s(pc->data[j].name, 30, pc->data[j + 1].name);
        strcpy_s(pc->data[j].sex, 5, pc->data[j + 1].sex);
        strcpy_s(pc->data[j].tele, 12, pc->data[j + 1].tele);
        strcpy_s(pc->data[j].addr, 30, pc->data[j + 1].addr);
        pc->data[j].age = pc->data[j + 1].age;
      }
      printf("删除成功\n");
      (pc->sz)--;
      ShowContact(pc);
    }
  }
}
void ModifyContact(struct Contact* pc)
{
  printf("请输入需要修改的联系人姓名\n");
  char name[30] = "0";
  scanf_s("%s", name, 30);
  for (int i = 0; i < pc->sz; i++)
  {
    if (strcmp(name, pc->data[i].name) == 0)
    {
      printf("请输入名字:>");
      scanf_s("%s", pc->data[i].name, 30);
      printf("请输入年龄:>");
      scanf_s("%d", &(pc->data[i].age));
      printf("请输入性别:>");
      scanf_s("%s", pc->data[i].sex, 5);
      printf("请输入电话:>");
      scanf_s("%s", pc->data[i].tele, 12);
      printf("请输入地址:>");
      scanf_s("%s", pc->data[i].addr, 30);
      printf("修改成功!\n");
      ShowContact(pc);
    }
  }
}
void ShowContact(struct Contact* pc)
{
  int i = 0;
  printf("序号\t%10s\t%10s\t%8s\t%15s\t%30s\n", "name", "age", "sex", "tele", "addr");
  for (i = 0; i < pc->sz ; i++)
  {
    //打印每一个数据
    printf("%d\t%10s\t%10d\t%8s\t%15s\t%30s\n",
      i + 1,
      pc->data[i].name,
      pc->data[i].age,
      pc->data[i].sex,
      pc->data[i].tele,
      pc->data[i].addr);
  }
}
void SearchContact(struct Contact* pc)
{
  printf("请输入需要搜索的联系人姓名\n");
  char name[30] = "0";
  scanf_s("%s", name, 30);
  for (int i = 0; i < pc->sz; i++)
  {
    if (strcmp(name, pc->data[i].name) == 0)
    {
      printf("序号\t%10s\t%10s\t%8s\t%15s\t%30s\n", "name", "age", "sex", "tele", "addr");
      printf("%d\t%10s\t%10d\t%8s\t%15s\t%30s\n",
        i + 1,
        pc->data[i].name,
        pc->data[i].age,
        pc->data[i].sex,
        pc->data[i].tele,
        pc->data[i].addr);
      return;
    }
  }
  printf("找不到联系人信息\n");
}
void SortContact(struct Contact* pc)
{
  struct PeoInfo temp;
  for (int j = 0; j < pc->sz - 1; j++)
    for (int i = 0; i < pc->sz - 1 - j; i++)
    {
      if (strcmp(pc->data[i].name, pc->data[i + 1].name) > 0)
      {
        temp = pc->data[i + 1];
        pc->data[i + 1] = pc->data[i];
        pc->data[i] = temp;
      }
    }
  ShowContact(pc);
}
void DestroyContact(struct Contact* pc)
{
  free(pc->data);
  pc->data = NULL;
  pc->capacity = 0;
  pc->sz = 0;
}

contact.h

#pragma once
#define NAME_MAX 30
#define SEX_MAX 5
#define TELE_MAX 12
#define ADDR_MAX 30
#define MAX 1000
#define DEFAULT_SZ 3 //默认大小为3
#include <string.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
//创建枚举变量
enum Option
{
  EXIT,
  ADD,
  DEL,
  SEARCH,
  MODIFY,
  SHOW,
  SORT
};
//描述人的信息
struct PeoInfo
{
  char name[NAME_MAX];
  int age;
  char sex[SEX_MAX];
  char tele[TELE_MAX];
  char addr[ADDR_MAX];
};
//通讯录-静态版本
//struct Contact
//{
//  struct PeoInfo data[MAX];//1000个人的数据存放在data数组中
//  int sz;//记录当前通讯录有效信息的个数
//};
//动态增长的版本
struct Contact
{
  struct PeoInfo* data;
  int sz;//通讯录中当前有效元素的个数
  int capacity;//通讯录的当前最大容量
};
//初始化通讯录
void InitContact(struct Contact* pc);
//增加联系人
void AddContact(struct Contact* pc);
//删除联系人
void DeletContact(struct Contact* pc);
//修改联系人信息
void ModifyContact(struct Contact* pc);
//搜索联系人信息
void SearchContact(struct Contact* pc);
//显示所有的联系人
void ShowContact(struct Contact* pc);
//按姓氏排序联系人信息
void SortContact(struct Contact* pc);
//销毁通讯录
void DestroyContact(struct Contact* pc);












相关文章
|
1天前
|
存储 程序员 编译器
C语言:动态内存管理
C语言:动态内存管理
8 1
|
1天前
|
存储 编译器 程序员
C语言:数据在内存中的存储
C语言:数据在内存中的存储
8 2
|
1天前
|
存储 编译器 C语言
C语言:字符函数 & 字符串函数 & 内存函数
C语言:字符函数 & 字符串函数 & 内存函数
9 2
|
10天前
|
存储 C语言 开发者
【C言专栏】C 语言实现动态内存分配
【4月更文挑战第30天】C语言中的动态内存分配允许程序运行时按需分配内存,提供处理未知数据量的灵活性。这涉及`malloc()`, `calloc()`, `realloc()`, 和 `free()`四个标准库函数。`malloc()`分配指定大小的内存,`calloc()`同时初始化为零,`realloc()`调整内存大小,而`free()`释放内存。开发者需谨慎处理内存泄漏和指针使用,确保程序的稳定性和性能。动态内存分配是C语言中的重要技能,但也需要良好的内存管理实践。
|
10天前
|
内存技术
深入理解操作系统:内存管理与虚拟内存
【4月更文挑战第30天】本文深入探讨了操作系统中的关键组成部分——内存管理,并详细解析了虚拟内存的概念、实现机制及其在现代计算系统中的重要性。我们将从物理内存的分配和回收讲起,逐步引入分页、分段以及虚拟地址空间等概念。文章旨在为读者提供一个清晰的框架,以理解内存管理背后的原理,并通过具体示例加深对虚拟内存技术的理解。
|
10天前
|
存储 算法 内存技术
深入理解操作系统内存管理:从虚拟内存到物理内存的映射
【4月更文挑战第30天】 在现代操作系统中,内存管理是一个复杂而关键的功能。它不仅确保了系统资源的有效利用,还为每个运行的程序提供了独立的地址空间,保障了程序之间的隔离性和安全性。本文将探讨操作系统如何通过分页机制和虚拟内存技术实现内存的抽象化,以及这些技术是如何影响应用程序性能的。我们将详细解析虚拟地址到物理地址的转换过程,并讨论操作系统在此过程中扮演的角色。文章的目的是为读者提供一个清晰的框架,以便更好地理解内存管理的工作原理及其对系统稳定性和效率的影响。
|
11天前
|
存储 程序员 C语言
C语言进阶第九课 --------动态内存管理-2
C语言进阶第九课 --------动态内存管理
|
11天前
|
编译器 C语言
C语言进阶第九课 --------动态内存管理-1
C语言进阶第九课 --------动态内存管理
|
11天前
|
C语言
C语言进阶第八课 --------通讯录的实现
C语言进阶第八课 --------通讯录的实现
|
16天前
|
存储 算法 C语言
C语言进阶:顺序表(数据结构基础) (以通讯录项目为代码练习)
C语言进阶:顺序表(数据结构基础) (以通讯录项目为代码练习)