谷歌发论文披露TPU详细信息,比GPU、CPU快15-30倍

简介:


自从Google去年透露自己开发了一款名为TPU的专用芯片,用于提高人工智能计算任务的执行效率,关于这种新芯片的猜测就从未停止。

今天,Google终于披露了关于TPU的更多信息。除了发表一篇有75位联合作者的论文《In-Datacenter Performance Analysis of a Tensor Processing UnitTM》外,文章的第四作者David Patterson还在美国国家工程院的活动上发表了演讲。

关于TPU的论文将正式发表于今年6月在多伦多召开的计算机体系结构国际研讨会(International Symposium on Computer Architecture, ISCA),Google目前已经在Google Drive上将其公开。

△ TPU的印刷电路板


该公司从2015年开始就一直在内部使用TPU,并在去年5月的Google I/O开发者大会上,对外公布了这种芯片的存在。

TPU是一种ASIC(专用集成电路),Google将其用在神经网络的第二个步骤。使用神经网络首先要用大量数据进行训练,通常在使用GPU加速的服务器上进行。之后,该公司便会开始使用TPU加速新数据的推断。谷歌表示,这比直接使用GPU或基本的x86芯片速度快很多。

他们在论文中写道:“尽管某些应用的利用率较低,但TPU平均比GPU或CPU速度快15至30倍左右。”其中的GPU或CPU具体指的是英伟达的Tesla K80 GPU和英特尔的至强E5-2699 v3芯片,后者可以成为TPU的底层平台。

过去5年,英伟达等公司的GPU已经成为经济型深度学习系统的默认基础架构,而谷歌也对此做出了贡献。但谷歌和微软等公司还在探索其他类型的人工智能芯片,包括FPGA(现场可编程门阵列器件)。谷歌的项目因为其来源和使用范围而受到关注,该公司工程师Norm Jouppi在博客中写道,这套系统已经应用于谷歌图片搜索、Google Photos和谷歌云视觉应用API等服务。

该论文称,一个TPU的片上内存容量达到Tesla K80的3.5倍,而且体积更小。每耗电1瓦的性能则高出30至80倍。谷歌目前可以将两个TPU安装到一台服务器中,但这并不表示他们不会开发其他更强大或更经济的硬件系统。

谷歌对人工智能网络的重视高于很多科技公司,他们2013年就认定这项技术广受欢迎,可以将其数据中心的计算需求扩大一倍。如果完全使用标准芯片,成本将十分高昂,难以承受。所以谷歌开始开发自己的技术,希望实现10倍于GPU的成本效益。

“我们没有与CPU密切整合,为了减少延迟部署的几率,TPU设计成了一个PCIe I/O总线上的协处理器,使之可以像GPU一样插到现有的服务器上。”论文还写道,“另外,为了简化硬件设计和调试过程,主服务器发送指令让TPU来执行,而不会自主执行。因此,与TPU更加接近的是FPU(浮点单元)协处理器,而非GPU。目标是在TPU运行完整的推理模型,降低与主CPU的互动,并使之足以灵活地满足2015年及之后的神经网络需求,而不仅仅适用于2013年的神经网络。

论文称,通常而言,在TPU上运行代码跟使用谷歌领导的TsensorFlow开源深度学习框架一样简单。

提示:Google在论文中提到的测试结果,都是基于该公司自己的测试标准。

原文发布时间为:2017-04-06

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
1月前
|
机器学习/深度学习 人工智能 芯片
42_大语言模型的计算需求:从GPU到TPU
随着2025年大语言模型技术的持续突破和规模化应用,计算资源已成为推动AI发展的关键驱动力。从最初的CPU计算,到GPU加速,再到专用AI加速器的崛起,大语言模型的计算需求正在重塑全球数据中心的基础设施架构。当前,全球AI半导体市场规模预计在2027年将达到2380亿美元(基本情境)甚至4050亿美元(乐观情境),这一增长背后,是大语言模型对计算能力、内存带宽和能效比的极致追求。
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
1072 0
|
8月前
|
存储 缓存 Linux
Linux系统中如何查看CPU信息
本文介绍了查看CPU核心信息的方法,包括使用`lscpu`命令和读取`/proc/cpuinfo`文件。`lscpu`能快速提供逻辑CPU数量、物理核心数、插槽数等基本信息;而`/proc/cpuinfo`则包含更详细的配置数据,如核心ID和处理器编号。此外,还介绍了如何通过`lscpu`和`dmidecode`命令获取CPU型号、制造商及序列号,并解释了CPU频率与缓存大小的相关信息。最后,详细解析了`lscpu`命令输出的各项参数含义,帮助用户更好地理解CPU的具体配置。
975 8
|
10月前
|
缓存 安全 Linux
Linux系统查看操作系统版本信息、CPU信息、模块信息
在Linux系统中,常用命令可帮助用户查看操作系统版本、CPU信息和模块信息
2040 23
|
缓存 监控 Linux
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
4871 2
|
机器学习/深度学习 人工智能 并行计算
CPU和GPU的区别
【10月更文挑战第14天】
|
机器学习/深度学习 人工智能 缓存
GPU加速和CPU有什么不同
【10月更文挑战第20天】GPU加速和CPU有什么不同
544 1
|
运维 JavaScript Linux
容器内的Nodejs应用如何获取宿主机的基础信息-系统、内存、cpu、启动时间,以及一个df -h的坑
本文介绍了如何在Docker容器内的Node.js应用中获取宿主机的基础信息,包括系统信息、内存使用情况、磁盘空间和启动时间等。核心思路是将宿主机的根目录挂载到容器,但需注意权限和安全问题。文章还提到了使用`df -P`替代`df -h`以获得一致性输出,避免解析错误。
501 1

热门文章

最新文章